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Why Targeting PSMA Is a Game Changer in the Management
of Prostate Cancer
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Prostate-specific membrane antigen (PSMA) is a transmembrane

glycoprotein that is highly expressed on prostate adenocarcinomas,
exhibits only limited expression in benign and extraprostatic tissues,

and thus represents an ideal target for the diagnosis and manage-

ment of prostate cancer. Since its discovery over 30 y ago,

significant effort has been made to develop clinical technology
targeting PSMA. The last 5 y have seen an explosion of develop-

ment of new agents targeting PSMA for diagnostic and therapeutic

use. Imaging agents targeting PSMA have been developed for

SPECT and PET platforms. PSMA PET imaging appears to out-
perform traditional imaging in the high-risk localized-disease state,

in patients with biochemical recurrence after treatment, and in

advanced disease. To date, most of the reported clinical studies of

therapeutic agents have used PSMA-targeted radiometals to deliver
b-radiation to metastatic disease sites, with 177Lu being the most

widely investigated therapeutic radioisotope. Studies of both anti-

bodies and small-molecule agents have been published and have
demonstrated encouraging results. Safety appears generally limited

to mild transient bone marrow toxicity and xerostomia because of

uptake of the small-molecule agents in the salivary glands. Radio-

logic responses can be dramatic, and decreases in pain have been
observed. The effect on overall survival, however, has yet to be

demonstrated.
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Advances in the early detection and treatment of prostate
cancer have resulted in a 50% decrease in mortality from prostate
cancer in the United States over the last 25 y (1). Despite these
strides, a subset of men either present with de novo metastatic
disease or will progress to the metastatic disease state despite
attempts to cure at the localized-disease state. Although androgen
deprivation therapy slows disease progression, metastatic tumors
ultimately develop castration resistance and are generally incur-
able. The past decade has seen the development of treatments of
various modalities for metastatic castration-resistant prostate cancer
(mCRPC), including second-generation endocrine manipulation, cy-
totoxic chemotherapy, cellular immunotherapy, and 223Ra-dichloride.
Although these agents have been shown to prolong overall survival,

the benefits conferred are modest, and mCRPC remains a lead-
ing cause of cancer death, killing over 300,000 men worldwide
annually (2).

BACKGROUND

Prostate-specific membrane antigen (PSMA) is a 750–amino-acid
type II transmembrane glycoprotein encoded by the folate hydrolase
1 gene located on the short arm of chromosome 11 (3). The name
PSMA is a misnomer, as the protein is expressed not only on both
benign and malignant prostate epithelium but also on a variety of
extraprostatic tissues, including the proximal renal tubules (4), je-
junal brush border (5), salivary glands (5), and neovasculature of
several solid tumors (6). Structurally, the transmembrane protein
consists of a 19–amino-acid intracellular domain, a 24–amino-acid
transmembrane domain, and a large, 707–amino-acid, extracellular
domain (7).
Histologically, PSMA is detectable at modest levels in the

epithelium of benign prostate tissue but demonstrates 100- to
1,000-fold expression on the epithelium of prostate adenocarci-
nomas (4,8). It is expressed in most tumors, and a positive corre-
lation has been observed between higher PSMA expression and
various measures of tumor aggressiveness, including Gleason
grade (8), tumor stage (9), biochemical recurrence (10), and cas-
tration resistance (11). The cytoplasmic domain of PSMA contains
a motif that results in internalization of bound PSMA via clathrin-
coated pits (12). This process provides the possibility that PSMA-
targeting agents might be internalized and concentrated within
tumor cells. PSMA is thus an attractive target for diagnostic and
therapeutic targeting for several reasons, including high expres-
sion on prostate cancer cells, limited expression on benign prostate
tissue, limited expression on nonprostate tissue, an extracellular
domain that can be targeted by antibodies, a well-characterized
binding site that can be targeted by small-molecule ligands, and a
motif that results in internalization of bound agents and concen-
tration within malignant cells.

TARGETING AGENTS

Antibodies

The first steps in targeting PSMA took place in the late 1980s
and involved generation of the 7E11-C35 antibody, which is
specific to an epitope at the intracellular domain of PSMA (13).
This antibody was then labeled with 111In, allowing for use with
SPECT imaging. This agent, known as capromab pendetide (Pros-
taScint; Aytu BioScience, Inc.) was Food and Drug Administration–
approved in 1996 for the detection of soft-tissue metastases. When
ProstaScint was evaluated for use in initial staging, 2 large multi-
center trials demonstrated sensitivities of 52%–62% and specificities
of 72%–96% using pelvic lymphadenectomy as the truth standard,
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outperforming both CT and MRI (14). When used for the detection
of suspected recurrent or residual cancer after treatment of the
primary tumor, ProstaScint demonstrated a sensitivity of 49%–
77% and specificity of 35%–71% (14). Despite this modestly im-
proved performance compared with traditional imaging, the
relatively poor sensitivity of ProstaScint in the setting of low
prostate-specific antigen (PSA) levels, difficulties in anatomic
localization because of the limitations of SPECT, and significant
operator dependence resulted in relatively limited use.
To improve on these limitations, huJ591, a humanized mono-

clonal IgG1 antibody that binds an extracellular epitope of PSMA,
has been developed for use with both g- and photon-emitting
metalloradionuclide agents (15). The antibody has been used in
several early-phase clinical trials for both imaging and therapy
(Supplemental Table 1; supplemental materials are available at
http://jnm.snmjournals.org) (16–19). Because IgG antibodies are
not filtered at the glomerulus and remain within the blood pool for
several days, imaging must be performed 6–8 d after infusion to
allow clearance of the antibody from the blood pool. An 80-
kDa minibody that has been genetically engineered to lack the
Fc-receptor domain, known as 89Zr-Df-IAB2M, was synthesized
with the aim of generating faster blood clearance in order to allow
for imaging at a shorter time interval (20). The initial studies
suggest that a 48-h wait time between infusion and imaging
may still be required.

Small-Molecule PSMA Ligands

Characterization of the active substrate-recognition site of the
PSMA molecule has allowed for the development of numerous
agents engineered to bind to this site. Small molecules have the
theoretic advantage over antibodies of achieving better tumor
penetration and faster clearance from the blood pool, allowing for
infusion and imaging to be performed during a single patient-visit.
Numerous small-molecule agents, labeled with a range of
radionuclides for use with both SPECT imaging and PET imaging,
as well as for the delivery of radiometallonuclides for treatment
purposes, have been developed and are in various stages of clinical
use (Table 1 and Supplemental Table 1). Several of the more
promising small-molecule agents are discussed below.

68Ga-PSMA-HBED-CC (68Ga-PSMA-11) is the most widely
used PET agent for PSMA-targeted imaging. First described in
2012, the agent consists of the HBED-CC chelator to which the
68Ga is bound, a lipophilic linker, and a urea-based Glu-CO-NH-
Lys motif that binds to the active site of the PSMA molecule (21).
It displays low-level natural uptake in the kidneys, salivary glands,
lacrimal glands, liver, spleen, and bowel and has demonstrated the
ability to detect prostate cancer within the prostate gland, within

small nodal metastases, within bony lesions, and even within more
widespread dedifferentiated tumors (22–24). Because the agent is
filtered at the glomerulus, high levels of activity are present in the
urine, potentially making the detection of local recurrences more
difficult; however, nodal metastases near the bladder have been
detected (24). A systematic review was published in 2016 by
Perera et al. evaluating the sensitivity and specificity of 68G-
PSMA-HBED-CC in various clinical settings (25). Further details
of the agent’s performance will be discussed below.
Another area of robust investigation in PSMA ligands involves

agents that use 18F, a radionuclide that has several theoretic advan-
tages over 68Ga, including better image resolution because of a
shorter positron range and a higher positron yield. Like the 68Ga
agents, 18F agents can be infused and imaged at the same visit. The
first of these agents to be tested clinically was 18F-DCFBC, which
has been evaluated both for disease assessment within the gland
(26) and for detection of metastases (27,28). Although initial re-
sults were encouraging, the significant blood-pool activity of the
agent prompted efforts to refine it and improve its performance.
The result of these efforts was a second-generation agent, 2-(3-
(1-carboxy-5-[(6-18F-fluoro-pyridine-3-carbonyl)-amino]-pentyl)-
ureido)-pentanedioic acid (18F-DCFPyL), which was initially evaluated
in a cohort of 9 patients with metastatic disease (29,30). As hoped,
the agent demonstrated a marked improvement in maximum tumor–
to–blood-pool uptake ratios (30), allowing for improved visual con-
spicuity of suspected disease. Another agent, 18F-PSMA-1007, is
also in development and has shown the ability to detect micrometa-
stases (31) in the biochemical recurrence setting.

DIAGNOSTIC TARGETING

High-Risk Initial Diagnosis

At least 4 published studies have evaluated the performance of
PSMA-targeted agents for use in initial staging of intermediate-
and high-risk disease for which histopathologic correlation was
performed (32–35). These studies used the 68Ga-PSMA-HBED-
CC tracer, and in all 4 studies, PET with this tracer outperformed
traditional CT or MRI for lymph node staging, with both improved
sensitivity and improved specificity on both a per-patient and a
per-template basis. On a per-patient basis, sensitivities ranged
from 33% to 91% and specificities from 67% to 100%. On a
per-template basis, sensitivities ranged from 74% to 86% and
specificities from 88% to 99%.

Biochemical Recurrence

At present, biochemical recurrence can be detected long before
imaging technology allows anatomic localization of disease. This
provides challenges for management because local radiotherapy,
which is known to prolong both disease-free and overall survival
(36), is most effective when applied at low PSA levels, although
local recurrence presently can only be inferred from pathologic
data and PSA kinetics. Given reticence to proceed with local
salvage radiotherapy without definitive evidence of local recur-
rence, imaging technology to improve the localization of disease
recurrence is of paramount interest and represents one of the most
robust areas of PSMA-targeted imaging research. Afshar-Oromieh
et al. published the largest study for this indication, an analysis of
1,007 men with biochemically recurrent disease (22) who under-
went PET using the 68G-PSMA-HBED-CC tracer. In 79.5% of
patients, at least 1 lesion suggestive of prostate cancer was iden-
tified, including lesions in bone, soft tissue, and viscera. There was

NOTEWORTHY

n PSMA has been a molecular target of interest in prostate
cancer since its discovery in 1986.

n A variety of antibodies and small-molecule imaging agents
targeting PSMA have demonstrated excellent early results
for a variety of disease states.

n Radioimmunotherapeutic and radioligand agents are cur-
rently being investigated for use in the mCRPC setting, with
several demonstrating encouraging clinical responses.

n The effect of these agents on overall survival remains a
subject of investigation.
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a clear relationship between the likelihood of a positive scan result
and PSA level: a 46% likelihood at a level of 0.5 ng/mL or less,

73% at 0.51–1.0 ng/mL, 80% at 1.1–2.0 ng/mL, 86% at 2.1–3.0

ng/mL, 91% at 3.1–5.0 ng/mL, 94% at 5.1–7.0 ng/mL, 91% at

7.1–10 ng/mL, and 96% at more than 10 ng/mL. A multivariable

logistic regression analysis found that log PSA and receipt of

androgen deprivation therapy predicted a positive scan result but

that Gleason score did not. These results are generally consistent

with a report from Eiber et al., who published on a cohort of 248

consecutive patients with biochemical recurrence after radical

prostatectomy. PSMA PET is especially relevant at low PSA val-

ues given that guidelines for salvage radiotherapy recommend

treatment at a PSA level of less than 0.5 and that other PET

tracers, such as 18F-choline, demonstrated limited sensitivity at

this level (19%–36%). Apropos to this point, Bluemel et al. pub-

lished a report on 125 patients with biochemical recurrence after

radiation or radical prostatectomy who underwent 18F-choline

PET and, if negative, 68G-PSMA–imaging and therapy (I&T)

PET/CT (177Lu-DOTAGA) (37). These investigators found that
68G-PSMA-I&T detected sites of BCR in 44% of patients with a

negative 18F-choline PET/CT result (37), with the incremental

benefit of the PSMA study being most pronounced in the subset

of patients with a PSA level of less than 1 ng/mL.

Metastatic

Most published studies have demonstrated that PSMA-targeting
agents, both antibody-based and small-molecule ligands, are safe

and provide high sensitivity and specificity for staging lymph

node, soft-tissue, and bony metastases (20,27,29,30,38–41). One

study, by Rowe et al.—a head-to-head comparison of the perfor-

mance of conventional imaging versus 18F-DCFPyL—demonstrated

some of the key considerations in this area (30). First, 18F-

DCFPyL detected over 3 times the number of metastatic lesions

detected by conventional imaging. Second, the authors discussed

the ability of 18F-DCFPyL to detect metastases in small lymph

nodes, noting the failure of simple size cutoff to distinguish be-

tween benign and malignant nodes. Finally, 18F-DCFPyL detected

metastatic disease in the periprostatic soft tissues, an area difficult

to assess with either CT or MRI, and the authors highlighted a case

in which a patient with normal results on pelvic MRI showed a

perirectal metastasis on 18F-DCFPyL PET. The main limitation of

this study and others in this area is the lack of a systematic formal

histologic evaluation on a lesion-by-lesion basis to serve as the

truth standard. As such, the true performance of PSMA-targeted

imaging for metastatic disease remains incompletely evaluated.

Nevertheless, the initial studies provide strong preliminary evi-

dence that PSMA-targeted imaging agents are likely to outperform

traditional imaging procedures for the detection of metastatic dis-

ease. The value of molecular imaging to monitor therapy is, at

present, unproven with respect to overall survival. Unfortunately,

molecular imaging is not included in ongoing large trials on ad-

vanced disease.

THERAPEUTIC TARGETING

Targeted cancer therapy aims to achieve sensitive and specific
on-target, on-tumor cell death while sparing normal tissues. Great

effort has been made to develop agents that target PSMA for

treatment in the mCRPC disease state, with the appreciation that

prostate cancer is radiosensitive, prompting investigation into the

use of radiopharmaceuticals as potential candidate effector agents.

Most published studies on nascent radiopharmaceuticals describe
small-molecule agents that use 177Lu as the radiometal, but early-
phase studies have evaluated antibody-based therapies as well. A
summary of the key published reports is provided in Table 1.
Several notable agents are discussed below. No randomized stud-
ies exist to date.
The first PSMA-targeted radioimmunotherapeutic studies used

the huJ591 antibody. Two phase 1 dose-finding studies, one using
90Y and one using 177Lu, were published (18,19), followed by a
phase 2 study using 177Lu and published in 2013 by Tagawa et al.
(17). In the latter, 47 patients were treated at 2 doses (2,405 and
2,590 MBq/m2). Key outcomes included a PSA decline of at least
50% in 10.6% of patients and a PSA decline of any amount in
59.6% of patients. Median overall survival for the entire cohort
was 17.6 mo, with higher-dose patients surviving almost twice as
long (21.8 vs. 11.9 mo). Myelosuppression was the main observed
side effect, including grade 4 thrombocytopenia in almost half the
patients, but was reversible. No significant hemorrhages occurred.
More recent attention has been focused on small-molecule

PSMA-targeting radioligand therapies, many of which use thera-
nostic agents. Theranostic agents are those in which the chelator is
capable of binding radiometals for both imaging (68Ga) and treat-
ment (177Lu). Like imaging agents, small-molecule radioligand
agents have the advantage of clearing from the blood more quickly
than antibodies, resulting in lower doses of radiation delivered to
normal tissues.
The best-studied PSMA-targeted radioligand therapeutic agent

is 177Lu-PSMA-617. The first reported cohort was published in
2015 (42), and since that time multiple investigator groups have
published results evaluating this agent (43–46). The largest study
to date is a retrospective multicenter cohort of 145 patients from
12 centers across Germany (47). Some variation in efficacy out-
comes is seen across the studies: after a single treatment, 59%–
79% of patients experienced a PSA decrease, with 32%–45% of
patients experiencing a decrease of at least 50%. The studies by
Rahbar et al. (47) and Kratochwil et al. (43) suggested that
patients who receive multiple treatments continue to respond to
subsequent treatments at a similar, if not increasing, rate. The
large German multicenter study demonstrated that the presence
of visceral metastases and an alkaline phosphatase level of at least
220 U/L predicted a lower rate of treatment response. The study
by Ahmadzadehfar et al. found that responders to the initial cycle
of treatment survived over twice as long as nonresponders (45). In
all cohorts, leukopenia and thrombocytopenia were reported but
were mild. Xerostomia was seen but was mild and transient and
rarely required salivary replacement.

177Lu-PSMA-I&T is yet another PSMA-targeted radioligand
therapeutic agent with early promising results. Baum et al. reported
on a group of 56 patients with mCRPC who underwent multiple
treatments (48). Overall, 80% of patients had a PSA decrease, with
59% having a decrease of more than 50%. Again, mild, self-limited
xerostomia was noted in 2 patients, with clinically insignificant
decreases in leukocyte and erythrocyte counts. RECIST morpho-
logic response assessment by CT demonstrated a partial response in
20%, stable disease in 53%, and progressive disease in 28%,
whereas response assessment by 68G-PSMA PET demonstrated a
partial response in 56%, stable disease in 8%, and progressive dis-
ease in 36%. The authors pointed out that changes detectable by
SUVs on PET/CT may occur before changes in lesion or lymph
node size and might be responsible for the discrepancy in response
rates.
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The PSMA-617 agent has also been tested in early clinical trials
with the a-emitting radiometal 225Ac in an attempt to reduce po-
tential hematologic and salivary toxicities (because of the shorter
range of a-particles) and potentially to break through radiore-
sistance to 225Lu. In a 14-patient dose-finding cohort, Kratochwil
et al. determined that a dose of 100 kBq/kg was the maximum
tolerable and that a schedule of dosing every 2 mo appeared
feasible (49). Efficacy was suggested, and plans for further study
are in progress.
Although dramatic radiologic responses have been noted in many

of these early-phase PSMA-targeting radioligand and radioimmu-
notherapeutic trials, and results suggest a role for these agents in the
management of mCRPC, there is, at present, no level 1 evidence
demonstrating a benefit to overall survival. The impact of cotarget-
ing approaches that create synthetic lethality from DNA damage
with poly(ADP-ribose) polymerase inhibitors, next-generation
androgen ablation, and platinum-based chemotherapies has not
yet been explored.

CONCLUSION

PSMA is a promising molecular target in prostate cancer
management for several reasons, including high levels of expres-
sion on most prostate cancer cells with limited expression on
benign tissues, proven in vivo safety and feasibility in targeting
PSMA using antibodies and small molecules, and a motif that
provides for internalization and concentration of agents. Several
studies have shown that the PET-based imaging assays outperform
standard imaging techniques and that these assays appear poised to
become a new standard in prostate cancer imaging. Early-phase
therapeutic trials of unsealed radiometals have produced promising
results in mCRPC; however, more study will be required to prove
their effect on meaningful endpoints. PSMA targeting is likely to play
a central role in prostate cancer management in the future.
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