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The G protein–coupled protein receptor C-X-C chemokine receptor
4 (CXCR4) is an attractive target for cancer diagnosis and treatment,

as it is overexpressed in many solid and hematologic cancers. Bind-

ing of its ligand, C-X-C chemokine ligand 12 (CXCL12), results in

receptor internalization and activation of several signal transduc-
tion pathways, such as phosphoinositide 3-kinase/protein kinase

B, which are critical in cell proliferation, angiogenesis, development

of metastasis, and survival. Also, the CXCR4–CXCL12 axis is in-

volved in the interaction between hematopoietic stem cells (as well
as hematologic and solid tumor cells) and their protective microen-

vironment. This interaction can be disrupted by CXCR4 antagonists.

This concept is being used clinically to harvest hematopoietic stem
or progenitor cells from bone marrow and to sensitize cancer cells

to conventional chemotherapy and radiotherapy, and the potential

to overcome tumor microenvironment–driven immunosuppression

is being explored. This review focuses on new strategies for im-
provement of cancer treatment by targeting of the CXCR4–CXCL12

interaction. Because of its critical role in cancer, many peptidic and

nonpeptidic ligands with different modes of antagonistic activity

against the CXCR4–CXCL12 axis have been developed, with some
of them reaching clinical trials. Molecular imaging with recently de-

veloped radiolabeled CXCR4 ligands could facilitate the selection of

patients who might benefit from directed targeted therapy, including

CXCR4-directed endoradiotherapy.
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Chemokine receptors form a large family of proteins that
mediate the chemotaxis of cells toward a gradient of chemokines.
C-X-C chemokine receptor 4 (CXCR4) is a G protein–coupled
chemokine receptor encoded on chromosome 2 (1). The receptor
has a 7-transmembrane structure with 7 helical regions connected
by 6 extramembrane loops (2). CXCR4 exerts its biologic effect
by binding its ligand, C-X-C chemokine ligand 12 (CXCL12)
(3,4), and activating the downstream signaling pathway; these

actions lead to an alteration of gene expression, actin polymeriza-
tion, cell skeleton rearrangement, and cell migration (Fig. 1) (5).
CXCR4 expression plays a key role during embryonic devel-

opment, as CXCR4 expression on progenitor cells allows migra-
tion from their place of origin to their destination, where they will
differentiate into organs and tissues. The CXCR4 pathway is important
in neoangiogenesis, immunity, and infections (6,7). In the late 1990s,
CXCR4 expressed on cluster of differentiation 4–positive (CD41) T
cells was discovered to serve as a coentry receptor for HIV type 1 (8).
The role of CXCR4 in numerous physiologic and pathologic circum-
stances, such as systemic lupus erythematosus, rheumatoid arthritis,
and multiple sclerosis, has been elucidated (5). CXCR4 and CXCL12
play decisive roles in tumorigenesis, including the enhancement of
cell proliferation, migration, and invasion; cancer cell–tumor micro-
environment interactions; and angiogenesis (9–11).

TARGETING OF CXCR4–CXCL12 AXIS

Multiple agents with different modes of antagonistic activity
against CXCR4–CXCL12 have been developed. In general, 4 major
classes of CXCR4 antagonists and agonists can be distinguished:
nonpeptide CXCR4 antagonists, such as the bicyclam derivative
AMD3100; small-peptide CXCR4 antagonists, such as T140 and
even smaller cyclic peptides; antibodies to CXCR4; and modified
agonists and antagonists for CXCL12 (12).
The bicyclam derivative AMD3100 (plerixafor injection; Mozobil

[Sanofi]), previously called JM3100, acts as a specific antagonist by
blocking the binding pocket of CXCR4 (13,14). The first clinical
trials with AMD3100 were designed for the treatment of HIV. In-
terestingly, an increased amount of white blood cells was observed in
healthy volunteers in phase 1 clinical trials (15). This finding led to
the discovery that AMD3100 mobilizes CD341 human hematopoi-
etic stem and progenitor cells from the bone marrow to peripheral
blood (16). Finally, AMD3100 was approved by the U.S. Food and
Drug Administration as a mobilizer of hematopoietic CD341 cells
from the bone marrow to the circulation (17,18). Orally available
CXCR4 antagonists include AMD070 (19,20).
The earliest efforts to find CXCR4 antagonists focused mainly

on peptide derivatives (21), including [Tyr5,12,Lys7]polyphemusin
II, which was designated T22 (22); the highly potent CXCR4
antagonist T140, a 14-mer peptide with a disulfide bridge; and
its smaller derivative, the cyclic pentapeptide FC131 (23,24).
These efforts were followed by the development of antibodies
specifically directed against CXCR4. Müller et al. described de-
creased metastasis in murine breast cancer models when a neu-
tralizing antibody against CXCR4 was used (10). In addition to
inhibition of metastasis, the discovery of a direct apoptotic effect
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of antibodies suggested that direct killing may be a mechanism for
tumor growth inhibition.
BMS-936564/MDX-1338 is a fully human anti–human CXCR4

IgG4 monoclonal antibody that is currently in phase 1 trials for the
treatment of relapsed or refractory acute myeloid leukemia, chronic
lymphatic leukemia, non-Hodgkin lymphoma, and multiple mye-
loma (25). Neutralization of the interaction between CXCL12 and
CXCR4 by use of the anti-CXCR4 antibody 12G5 significantly
inhibited HIV infection and tumor cell migration in vitro (26). Re-
cently, the development of a fully human single-domain antibody-
like scaffold (termed an i-body) with activity against human
CXCR4 was reported (27). Another CXCR4-targeting agent is
CTCE-9908, a 17-amino-acid-sequence peptide analog of CXCL12
with inhibitory capacity and approved for clinical use in patients
with osteosarcoma (28,29). Other agents or strategies for interfer-
ing with the CXCR4–CXCL12 axis include the anti-CXCL12
aptamer NOX-A12 (Noxxon Pharma AG), CCX2066, and RNA
interference (30,31).

ROLE OF CXCR4–CXCL12 IN TUMOR

CELL–MICROENVIRONMENT INTERACTIONS

Classic chemotherapeutic anticancer treatments induce cell
death through DNA damage by taking advantage of the pro-
liferative behavior of cancer cells. An alternative approach strikes
at the critical driving forces of cancer cells. The importance of the
microenvironment in the tumorigenic potential of epithelial cells
is well established (32,33). The tumor microenvironment contains
numerous cell types in addition to cancer cells—including stromal
fibroblasts, endothelial cells, immune cells, connective tissue, and
extracellular matrix—that support tumor structure, angiogenesis,
and growth (33).
High levels of CXCL12 expressed by cancer cells and tumor-

associated stromal cells directly stimulated the proliferation and
invasiveness of breast cancer cells in autocrine and paracrine
manners (9,33). Moreover, in mouse models of human breast

cancer (9) and prostate cancer (33), high
CXCL12 levels in the tumors attracted
CXCR4-positive inflammatory, vascular,
and stromal cells to the tumor mass, where
they would eventually support tumor
growth by secreting growth factors, cyto-
kines, chemokines, and proangiogenic
factors.
In the bone marrow, constitutive CXCL12

secretion by stromal cells is crucial for
homing and sustaining CXCR4-expressing
hematopoietic stem and progenitor cells in
their niches (34,35). As shown in acute my-
eloid leukemia human xenotransplant mouse
models, leukemic cells also localize in
CXCL12-rich niches of bone marrow, where
the protective microenvironment favors their
growth and survival during cytotoxic treat-
ment (36). As shown in murine models of
chronic myelogenous leukemia (37), acute
myeloid leukemia (38), and chronic lympho-
cytic leukemia (39), CXCR4 antagonists can
disrupt tumor–stroma interactions and mobi-
lize leukemic cells to the peripheral blood,
making them more sensitive to conventional

anticancer drugs (40–46).
CXCR4 antagonists have also been evaluated for inhibition of the

cross talk between tumor and stromal cells and for mobilization of
cancer cells from the protective microenvironment of solid
tumors, making them more sensitive to conventional chemother-
apy or radiotherapy and antiangiogenic therapy (3,34,47–49).
In a glioblastoma mouse model, combined vascular endothelial

growth factor and CXCR4 antagonism targeting the glioblastoma
stem cell population resulted in improved survival (50). Glioblas-
toma recurrence involves the persistence of a subpopulation of
cells that have enhanced tumor-initiating capacity and that reside
within the perivascular space, or niche. Antiangiogenic therapies
may prevent the formation of new perivascular space but have not
prevented recurrence in clinical trials (51,52), suggesting that
they cannot abrogate tumor-initiating capacity. Anti–vascular en-
dothelial growth factor and CXCR4 treatment indicates that target-
ing the structure and function of the perivascular space, or niche,
has a superior antitumor effect. This concept was set to be evaluated
in a clinical trial aiming to explore the efficacy of plerixafor and
bevacizumab (ClinicalTrials.gov identifier: NCT01339039); how-
ever, the study was terminated because of a low accrual rate.
Another CXCR4 inhibitor, USL311, is currently under investi-

gation alone and in combination with lomustine in a phase 1/2,
dose escalation and dose expansion study in subjects with ad-
vanced solid tumors (phase 1) and subjects with relapsing or
recurrent glioblastoma (phase 2). The study is designed to explore
the safety, tolerability, pharmacokinetics, and preliminary efficacy of
USL311 alone and in combination with lomustine (ClinicalTrials.
gov identifier: NCT02765165).

ROLE OF CXCR4–CXCL12 IN IMMUNITY IN

TUMOR MICROENVIRONMENT

Immune checkpoints consisting of inhibitory pathways are a part
of the immune system that is crucial for maintaining self-tolerance
and modulating the duration and amplitude of physiologic immune

FIGURE 1. Some key signaling pathways thought to be involved in CXCR4–CXCL12 signaling.

On agonistic binding to CXCR4, CXCL12 is internalized and finally subjected to lysosomal deg-

radation. Activation of CXCR4 induces β-arrestin–mediated signaling. On the basis of their se-

quence similarity, Gα subunits are divided into 4 families (Gαs, Gαi, Gαq, and Gα12) that regulate
G protein–coupled receptor signals via different routes.

78S THE JOURNAL OF NUCLEAR MEDICINE • Vol. 58 • No. 9 (Suppl. 2) • September 2017

http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov


responses in peripheral tissues to minimize collateral tissue damage.
Tumors coopt certain immune checkpoint pathways as a major
mechanism of immune resistance, particularly against T cells
that are specific for tumor antigens (53). Cytotoxic T-lymphocyte–
associated antigen 4 antibodies, programmed cell death protein 1
(PD-1), and programmed cell death ligand 1 antibodies promote the
killing of cancer cells by cytotoxic T cells and have been successful
in subsets of patients with melanoma, non–small cell lung cancer,
urothelial bladder cancer, renal cell cancer, and head and neck
cancer (54–60). Nevertheless, it has become apparent that even if
these T-cell checkpoint antagonists overcome some of the immuno-
suppressive effects of the tumor microenvironment, other, more
fundamental inhibitory reactions in the tumor microenvironment
may explain why most patients—especially those with microsatel-
lite stable colorectal cancer, ovarian cancer, prostate cancer, and
pancreatic ductal adenocarcinoma—rarely exhibit objective responses
to these therapies (34,55,61).
Effective immunotherapy requires that these T cells physically

contact cancer cells. Cancer-associated fibroblasts were shown to
exclude T cells by mediating the extracellular matrix (60,62).
Live-cell imaging of lung tumor tissue slices from patients
revealed active T-cell motility in regions of loose fibronectin
and collagen, whereas T cells migrated poorly in dense matrix
areas surrounding tumor nests (63). When collagenase was added
to reduce matrix rigidity or when the chemokine CCL5 was ex-
perimentally produced by tumor cells, increased T-cell movement
out of the stromal regions and into contact with cancer cells was
observed. Also, cancer-associated fibroblasts excluded T cells by
biosynthesis of CXCL12. The administration of AMD3100 in an
autochthonous pancreatic ductal adenocarcinoma mouse model
induced rapid T-cell accumulation among cancer cells and acted
synergistically with anti–programmed cell death ligand 1 to dimin-
ish cancer cells (64).
The stromal cell–derived factor 1a/CXCR4 pathway mediated

stroma polarization toward an immunosuppressive microenviron-
ment and contributed to systemic disease progression after anti-
angiogenic treatment in a hepatocellular mouse model (65).
AMD3100 prevented this immunosuppressive microenvironment
after sorafenib treatment, inhibited tumor growth, reduced lung
metastasis, and improved survival (66). In treatment-naive tumors
in mice with orthotopic hepatocellular cancer, CXCR4 inhibition
in the tumor microenvironment was demonstrated to facilitate
anti–PD-1 immunotherapy. In an in vivo lung metastatic mouse

model of human melanoma, the CXCR4 antagonist T22 sensitized
melanoma cells for immunity–augmenting low-dose cyclophos-
phamide and anticytotoxic T-lymphocyte–associated antigen 4
monoclonal antibody therapy, resulting in 70% and 50% fewer
lung metastases, respectively, than cyclophosphamide and anticy-
totoxic T-lymphocyte–associated antigen 4 monoclonal antibody
therapy alone (67).
The concept of inhibition of the CXCL12–CXCR4 axis in com-

bination with treatment with an immune checkpoint inhibitor is
currently being tested in a phase 1a/b trial evaluating the safety
and tolerability of CXCR4 peptide antagonist LY2510924 in com-
bination with a monoclonal antibody targeting programmed cell
death ligand 1 durvalumab in patients with advanced refractory
solid tumors.

CXCR4 RECEPTOR IMAGING AND CXCR4-DIRECTED

RADIONUCLIDE THERAPY

Given the paramount importance of the CXCL12–CXCR4 axis
in a multitude of tumors, the chemokine receptor represents a
promising target for imaging and therapy. Recently, noninvasive
molecular imaging of CXCR4 expression was made feasible by
the introduction of radiolabeled receptor ligands that allow for
whole-body SPECT or PET (68–73). For example, labeling of
AMD3100 with 99mTc resulted in specific binding in organs with
high levels of CXCR4 expression and CXCR4-positive tumors
(71). The development of 68Ga-pentixafor can be regarded as a
milestone for clinical PET imaging of CXCR4 expression
(69,70). Proof-of-concept visualization with this tracer could be
demonstrated not only for several different hematologic and other
neoplasms—including leukemia, lymphoma, multiple myeloma,
adrenocortical carcinoma, and small cell lung cancer (Fig. 2)
(72–77)—but also for other solid tumors and disease conditions—
such as splenosis, stroke, atherosclerosis, and myocardial infarc-
tion (78–84).
Interestingly, patients can present with striking inter- and

intraindividual receptor expression heterogeneity. Solid tumors,
in particular, have demonstrated lower levels of in vivo CXCR4
expression, as is generally described for in vitro expression
profiles (78). As a potential explanation, differences between ei-
ther transcript or whole-protein level analysis of CXCR4 expres-
sion and membrane-associated tracer binding in the primary tumor
and metastases have been considered (85). Additionally, chemo-

kine receptor expression on the cell surface
has been shown to be a dynamic process
that is responsive to concomitant or inter-
mittent therapy (Constantin Lapa, unpub-
lished data, 2017). Future studies should
investigate the underlying mechanisms and
biologic implications (76). So far, the main
value of CXCR4 imaging in oncology is not
staging of disease but identification of suit-
able candidates for chemokine receptor–
targeted treatment, including radiolabeled
and nonradiolabeled options. Most available
data concern multiple myeloma, with about
two thirds of patients having CXCR4-positive
disease (76).
Recently, a peptide ligand that can be

labeled with a- or b-emitters (pentixather)
and that represents a therapeutic counterpart

FIGURE 2. Maximum-intensity projections of different tumor entities undergoing 68Ga-pentix-

afor PET/CT: multiple myeloma, diffuse large B-cell lymphoma (DLBCL), T-cell prolymphocytic

leukemia (T-PLL), adrenocortical carcinoma (ACC), and small cell lung cancer (SCLC).
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to the diagnostic PET/SPECT agents was developed (86). Thus, the
so-called theranostic concept known from neuroendocrine tumors

or even thyroid carcinoma can be applied to various diseases,

offering new, exciting options for individualized medicine in terms

of endoradiotherapy. The first encouraging results were obtained

from small pilot studies with end-stage multiple myeloma pa-

tients, in whom CXCR4-directed endoradiotherapy resulted in

high initial response rates (87,88). However, given the ultra-

high-risk patient population, the duration of the response was rel-

atively short, with median progression-free and overall survival

times of 54 and 223 d, respectively (88).
Experience and promising data have also been gained for

other hematologic malignancies, such as (relapsed or refrac-

tory) acute myeloid leukemia and diffuse large B-cell lymphoma,

which could also be effectively targeted by radionuclide therapy

(Constantin Lapa, unpublished data, 2015–2017). Up to now, more

than 30 therapies have been safely performed and have been well

tolerated, without any significant adverse reaction in most cases.

However, tumor lysis syndrome was observed in a single case with

a high tumor burden and highly dedifferentiated myeloma (88). In all

cases, endoradiotherapy was added to standard high-dose che-

motherapy as part of the conditioning regimen before stem cell

transplantation to augment tumor cell killing and to mediate

(expected) CXCR4-directed therapy–induced myeloablation due

to receptor expression on the tumor and on physiologic bone

marrow progenitor cells. Therefore, endoradiotherapy is espe-

cially suitable for hematologic disease, in which tumor and bone

marrow ablation is highly desirable and stem cell rescue is not a

concern.
Whereas side effects in bone marrow have prevented the use of

radionuclide therapy for solid cancers so far, endoradiotherapy

could be considered an option for malignancies such as adreno-

cortical cancer or small cell lung cancer, given the intense

receptor expression in relapsed stages and an otherwise dismal

prognosis. Future trials will investigate the benefit of endo-

radiotherapy in patients with multiple myeloma or lymphoma at

earlier disease stages (COLPRIT trial; European Union Drug

Regulating Authorities Clinical Trials number 2015-001817-

28). Future research will also focus on combinations of endo-

radiotherapy and “conventional” therapies, which could lead to

synergistic effects. Both preclinical studies in myeloma cell

lines and clinical observations in patients with various diseases

(such as myeloma, diffuse large B-cell lymphoma, and acute

myeloid leukemia) have suggested the possibility of up- or

downregulating CXCR4 on the cell surface. 68Ga-pentixafor

could prove to be a useful tool for studying the spatial and

temporal orchestration of CXCR4 biology in the process of me-

tastasis, response to and acquisition of resistance to treatment, or

disease relapse.

CONCLUSION

CXCR4, a surface receptor that is overexpressed in multiple
cancer types, plays a role in various stages of tumor progression

and other diseases. CXCR4 inhibitors are in clinical use as bone

marrow stem cell or progenitor cell mobilizers and are being

investigated either alone or in combination with other systemic

treatments in numerous clinical trials. The next major develop-

ment may be CXCR4-directed endoradiotherapy, for which the

results of clinical trials are eagerly awaited.
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