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Radiomics in PET/CT: More Than Meets the Eye?
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Radiomics is defined as the high-throughput extraction of
quantitative metrics from medical images (1). One of its main
assumptions is that medical images are considered not merely
pictures for visual assessment but rather minable quantitative data
(2) that may not necessarily be captured by the human eye (3).
In this issue of The Journal of Nuclear Medicine, Orlhac

et al. present a study comparing visual assessment of uptake
heterogeneity on PET images by experts and a subset of radio-
mics metrics, namely textural features (4). They exploited both
clinical and simple simulated PET images, going further than
previous studies performed using clinical data only (5–7).
Such studies are useful because they provide additional un-
derstanding relative to the visual meaning of quantitative met-
rics that cannot easily be explained to nonspecialists. These
studies have focused on the PET component and the 18F-FDG
uptake heterogeneity. Similar analyses have been performed
with CT (8) and MRI (9).
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One important finding is that textural features calculated after a
relative quantization process (i.e., resampling the original image
intensities into a variable number of bins of fixed width; e.g., 0.5
SUV (10)) correlate better with visual assessment than do those
calculated after the usual quantization process (i.e., uniformly
resampling the original intensities into a set number of bins;
e.g., 64 or 128). These different observations can be related over-
all to different factors, such as the very different correlative re-
lationships between texture parameters and either SUVmax or the
number of voxels involved (tumor volume), which also have been
previously reported (10–13). Other quantization processes (histo-
gram equalization, Max–Loyd clustering, and others) can lead to yet
further differences in distribution and associated clinical value (14).
The consensus among experts was also substantially higher than

in earlier studies, mostly because only 2 categories (heterogeneous
vs. homogeneous) were considered, compared with 3 (5), 4 (7), or
even 5 (8) in previous studies. In one study (5), the visual assessment

into 3 categories had limited prognostic value compared with tex-
tural features (5). Because there was no clinical endpoint (survival,
outcome) in the study by Orhlac et al., we cannot draw conclusions
about the clinical value of the features that correlated well with
visual assessment, although it is safe to assume that these features
will be useful in clinical applications for which there is a correlation
between patient outcome and the level of uptake heterogeneity
visually assessed (or SUVmax, given the observed correlations).
The primary goal of radiomics is to build clinical models using

machine-learning techniques (15) to predict patient outcome,

thereby allowing better patient management. These multiparametric

models, which are likely to be unintelligible even to experts because

they combine a large number of high-order multimodality image

features (13,16), should outperform visual analysis in terms of both

accuracy and reproducibility. To associate a visual meaning to such

models can be even more challenging because they can also incor-

porate information from other fields (demographics, histopathology,

genomics). The human brain can take into account only a limited

number of parameters in making a decision; therefore, these multi-

parametric models will not be easily apprehended by end users.

These models will clearly demand a high level of precision and

robustness in order to be accepted and relied on to formulate a

clinical decision. Within this context, a rigorous process of model

development (proper training) and validation (independent large

cohorts) is needed, which is still far from being a standard, although

some encouraging results have been published (17,18).
The current radiomics paradigm consists in adding quantitative

information to the visual analysis by radiologists and nuclear

medicine physicians, rather than replacing it entirely. For instance,

it was recently shown that a set of semantic features obtained from

visual assessment by radiologists could beneficially complement

quantitative radiomics in determining epidermal growth factor

receptor mutations in lung cancer (19). However, a recent trend

in medical imaging is to exploit techniques from the field of deep

learning (20), with examples in image segmentation (21) or radiomics-

type studies (22). This will further complicate the issue of association

with visual analysis. Indeed, on the one hand the standard radiomics

workflow relies on the extraction of carefully designed features based

on domain expertise (e.g., a specific calculation in the intensity histo-

gram or in a predesigned texture matrix), some of which are clearly

inspired by the human visual system. On the other hand, deep learning

methods automatically discover features from data and the representa-

tions useful for the task at hand using a general-purpose learning pro-

cedure such as convolutional neural networks. These require substan-

tial amounts of data not easily available in the field of medical

imaging, particularly in PET/CT. Potential solutions include transfer

learning, consisting in using convolutional neural networks trained

for an unrelated task using large datasets, and adapting them to a
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different setting (23,24). If these tools were to advantageously re-
place the current workflow of radiomics, removing the need for
tumor segmentation or the complex task of selecting relevant and
reliable features (11,25), as well as improving the ability to handle
standardization issues (26), the relationship with visual analysis by
experts would not simply be more difficult but certainly unnecessary
to establish.
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