Many studies have pointed out the role of 18F-FDG PET/CT (or 18F-FDG PET) in patients with clinical stage III or II breast cancer. 18F-FDG PET/CT might advantageously replace other staging procedures, such as bone scanning and possibly contrast-enhanced CT of the thorax or abdomen–pelvis. We discuss the findings, locoregional or distant, that can be expected in different categories of breast cancer and their impact on prognosis and management. We also discuss the role of 18F-FDG PET/CT in restaging and how 18F-FDG PET/CT compares with conventional techniques in restaging for patients with suspected disease recurrence. We conclude with some recommendations for clinical practice and future research.

Key Words: 18F-FDG PET/CT; breast cancer; staging; restaging; prognosis

J Nucl Med 2016; 57:17S–26S
DOI: 10.2967/jnumed.157859

Accurate staging is important for management decisions in patients with newly diagnosed breast cancer. Several studies have pointed out the lack of utility of PET/CT with 18F-FDG in staging for patients with cancer detected early, that is, tumors of less than or equal to 2–3 cm and no palpable nodes—findings that represent most breast cancer cases (1–5). The lower sensitivity of 18F-FDG imaging than of the sentinel node technique in assessing axillary lymph node involvement is well known (1–3), and the risk of distant metastases in early-stage cases is low (4,5). These factors, combined with the good but finite specificity of 18F-FDG PET/CT, result in a relative abundance of false-positive findings and a paucity of true-positive findings; such findings lead to unwarranted patient anxiety and delay of care with the routine use of 18F-FDG PET/CT for breast cancer detected early.

In contrast, in such high-risk patients as those with inflammatory (T4d) or locally advanced breast cancer (LABC) (6,7), the role of 18F-FDG imaging in detecting distant lesions has been highlighted (8–12). Recently, several studies pointed out that staging with 18F-FDG PET/CT might be of value not only in patients with locally advanced disease but also in “intermediate-risk” patients (13–21)—that is, patients with clinical stage IIB disease (T2N1/T3N0) or higher—with significant diagnostic yield and prognostic information (18,19). PET/CT has also shown good performance in restaging for breast cancer patients (22–35).

This review assesses the advantages and limits of 18F-FDG PET/CT in initial staging and restaging for breast cancer patients.

REGIONAL AND DISTANT STAGING IN LOCALLY ADVANCED AND INFLAMMATORY BREAST CANCER

LABC is variably defined but usually refers to clinical N2, N3, or T4 disease and typically includes American Joint Committee on Cancer (AJCC) clinical stage IIIA (excluding T3N1), IIIB, and IICC breast cancer (Table 1) (6,7). Within this entity, distinction is made between inflammatory carcinoma (T4d) and noninflammatory LABC. Patients without identified distant metastases usually receive neoadjuvant chemotherapy followed by surgery and radiation therapy as standard treatment.

Detection of Regional Node Involvement Outside Axillary Levels I and II

Axillary node clearance by axillary dissection is usually limited to levels I and II. 18F-FDG uptake suggesting involvement at level III (infraclavicular) or in extraraxillary locoregional nodes (supraclavicular or internal mammary) may have important implications in surgical management and the design of radiation therapy fields (7). Correlative CT information (from hybrid PET/CT imaging) is helpful in providing the anatomic location of 18F-FDG-avid lymph nodes (precise position relative to pectoralis minor muscle, clavicle, or intercostal space; Fig. 1) (36).

Detection of Distant Metastases

LABC is associated with a high risk of distant metastases (Fig. 2). A pilot study by van der Hoeven et al. of 48 patients with LABC suggested that 18F-FDG PET was helpful in detecting distant metastases not seen with routine investigations (8). In a prospective cohort of 117 LABC patients (35 with inflammatory carcinoma and 82 with noninflammatory LABC), Groheux et al. compared a conventional staging approach routinely ordered by clinicians and including bone scanning, chest radiography (or dedicated CT), or liver ultrasound (or contrast-enhanced CT for abdomen–pelvis) with a single session of staging with 18F-FDG PET/CT (12). Distant metastases were detected on PET/CT in 43 patients (46% of patients with inflammatory LABC and 33% of those with noninflammatory LABC), whereas conventional imaging detected metastases in only 28 patients. 18F-FDG PET/CT outperformed conventional imaging for bone, distant lymph node, and liver metastases, whereas CT was more sensitive for lung metastases (12).

PET efficiently detects supracentimetric pulmonary nodules. However, because of the partial-volume effect and respiratory
PET is more efficient than CT or bone scintigraphy for depicting lytic or mixed bone metastases and bone marrow lesions but can lack sensitivity for purely sclerotic bone metastases. However, although sclerotic metastases have no 18F-FDG uptake, they show osteocondensation on underlying CT images, so that they can be detected by hybrid PET/CT (36). A retrospective study comparing 18F-FDG PET/CT and bone scanning suggested a high concordance; it was rare for bone scintigraphy to diagnose bone involvement not identified by 18F-FDG PET/CT (37). These findings need confirmation in a prospective study but were significant enough to lead to the amendment of U.S. National Comprehensive Cancer Network (NCCN) guidelines to suggest that bone scintigraphy may not be necessary if both the PET and the CT components of 18F-FDG PET/CT that are used for staging are able to identify bony metastases (7).

In total, there is evidence that PET/CT can advantageously replace conventional imaging for examining extraaxillary nodes, chest, abdomen, and bone in a single session (12,17). PET/CT lacks sensitivity for brain metastases; patients at risk require dedicated imaging.

TABLE 1

<table>
<thead>
<tr>
<th>AJCC</th>
<th>TNM</th>
<th>NCCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>T1</td>
<td>N0</td>
</tr>
<tr>
<td>Stage IIA</td>
<td>T0</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N0</td>
</tr>
<tr>
<td>Stage IIB</td>
<td>T2</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
</tr>
<tr>
<td>Stage IIIA</td>
<td>T3</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td>T0</td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N2</td>
</tr>
<tr>
<td>Stage IIIB</td>
<td>T4</td>
<td>N0</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N2</td>
</tr>
<tr>
<td>Stage IIIC</td>
<td>Any T</td>
<td>N3</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Any T</td>
<td>Any N</td>
</tr>
</tbody>
</table>

Network (NCCN) guidelines suggest that bone scintigraphy may not be necessary if both the PET and the CT components of 18F-FDG PET/CT that are used for staging are able to identify bony metastases (7).

In total, there is evidence that PET/CT can advantageously replace conventional imaging for examining extraaxillary nodes, chest, abdomen, and bone in a single session (12,17). PET/CT lacks sensitivity for brain metastases; patients at risk require dedicated imaging.

AT WHICH CLINICAL STAGE SHOULD 18F-FDG PET/CT BE INITIATED?

Between LABC and disease detected early (tumors of <2–3 cm; clinical N0), there are intermediate stages comprising large breast...
TABLE 2

Studies Evaluating 18F-FDG PET/CT for Baseline Staging of Clinical Stage II or III Breast Cancer

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Type of study</th>
<th>Patient recruitment</th>
<th>No. of patients</th>
<th>Conventional imaging (CI)</th>
<th>Results of PET/CT examination (compared with those of CI)</th>
<th>Reference for diagnosis</th>
<th>Conclusion of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuster et al.</td>
<td>2008</td>
<td>P</td>
<td>Noninflammatory large BC (\geq3 cm)</td>
<td>60</td>
<td>Breast MRI, chest CT, liver US, BS</td>
<td>Sensitivity and specificity to detect LN involvement were 70% and 100%, respectively</td>
<td>Histopathologic confirmation or \geq1 y of follow-up</td>
<td>PET/CT accurately detected unsuspected extraaxillary LN involvement and distant metastases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sensitivity and specificity to detect metastases were 100% and 98%, respectively (vs. 60% and 83%, respectively, for CI)</td>
<td></td>
<td>PET/CT accurately ruled out false-positive distant metastases on CI</td>
</tr>
<tr>
<td>Segaert et al.</td>
<td>2010</td>
<td>R</td>
<td>Clinical stage IIB or III BC</td>
<td>70</td>
<td>Chest radiography, liver US, BS</td>
<td>Sensitivity and specificity to detect axillary LN involvement were 62.5% and 100%, respectively (vs. 87.5% and 100%, respectively, for CI)</td>
<td>Histopathologic confirmation or clinical or imaging follow-up</td>
<td>For LABC, PET/CT was superior to CI for detecting internal mammary-chain nodes and metastatic disease but not for axillary staging</td>
</tr>
<tr>
<td>Koolen et al.</td>
<td>2012</td>
<td>P</td>
<td>Clinical stage II or III BC</td>
<td>154</td>
<td>Chest radiography, liver US, BS</td>
<td>Correct stage IV upstaging in 13% of patients</td>
<td>Histopathologic confirmation or additional imaging or follow-up</td>
<td>PET/CT outperformed CI in detection of distant metastases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Incorrect stage IV upstaging in 3% of patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groheux et al.</td>
<td>2012</td>
<td>P</td>
<td>Clinical stage II or III BC</td>
<td>254</td>
<td>Mammography, breast + axilla US, breast MRI ± additional directed radiologic studies</td>
<td>Change of clinical stage in 30% of patients</td>
<td>Histologic confirmation or directed radiologic studies + patient follow-up</td>
<td>Yield of PET/CT in staging of BC was substantial in patients with clinical stage IIB BC or higher</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Upstaging to stage IV in 2% of stage IIA, 11% of stage IIB, 17% of stage IIIA, 36% of stage IIIIB, and 47% of clinical stage IIIC BC patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Status of M stage on PET/CT and TNBC phenotype were independent predictors of worst survival</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BREAST CANCER STAGING AND RESTAGING • Groheux et al. 19S
carcinomas or clinical N1 disease (stage IIA, stage IIB, and the T3N1 category of stage IIIA) (Table 2; Fig. 3). Early studies including both patients with stage II and patients with stage III breast carcinomas showed that PET/CT was helpful for detecting extraaxillary lymph node involvement and distant occult lesions (13–17). For example, Fuster et al. studied 60 consecutive patients with large breast cancers (>3 cm). Metastases missed by “conventional” work-up (chest contrast-enhanced CT, liver ultrasonography, and bone scans) were visualized by 18F-FDG PET/CT in 8 patients (14). However, the precise clinical stage at which PET/CT could be performed with favorably balanced cost-effectiveness remained unclear from these studies.

More recently, Groheux et al. reported results from a prospective evaluation of 254 patients with breast cancers larger than 2 cm (18). The yield from 18F-FDG PET/CT imaging was examined in each of the specific subsets of patients with clinical stage IIA, IIB, IIIA, IIB, or IIIIC breast cancer (based on clinical examination, mammography, breast MRI, and locoregional ultrasonography). 18F-FDG PET/CT

<table>
<thead>
<tr>
<th>Study Year</th>
<th>Type of study</th>
<th>Patient recruitment</th>
<th>No. of patients</th>
<th>Conventional imaging (CI)</th>
<th>Results of PET/CT examination (compared with those of CI)</th>
<th>Reference for diagnosis</th>
<th>Conclusion of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochet et al. (19) 2014</td>
<td>P BC ≥ 2 cm</td>
<td>142</td>
<td>Mammography, breast + chest US ± breast MRI, chest radiography, abdominal US, BS ± abdominal or chest CT</td>
<td>Upstaging in 30% of patients (to stage IV in 8%)</td>
<td>Histopathologic confirmation or additional imaging + patient follow-up</td>
<td>BC staging with PET/CT more accurately stratified prognostic risk than did CI</td>
<td></td>
</tr>
<tr>
<td>Riedl et al. (20) 2014</td>
<td>R ≤ 40 y old with clinical stage I–IIIIC BC</td>
<td>134</td>
<td>Mammography, breast US ± breast MRI</td>
<td>Unsuspected extraaxillary LN involvement in 11% of women</td>
<td>Histologic confirmation for patients with upstaging</td>
<td>PET/CT was valuable for baseline staging in young patients with asymptomatic stage IIB and III BC</td>
<td></td>
</tr>
<tr>
<td>Krammer et al. (21) 2015</td>
<td>P T ≥ T2 or positive LN</td>
<td>101</td>
<td>Mammography, breast + chest US ± breast MRI, chest radiography, abdominal US, BS</td>
<td>Upgrading of N or M stage in 19% of patients</td>
<td>Histopathologic confirmation or additional imaging or follow-up</td>
<td>Compared with CI, PET/CT had relevant impact on baseline staging and therapeutic management of BC</td>
<td></td>
</tr>
</tbody>
</table>

*In the case of several reports by the same team, study with largest number of patients was selected. Studies with only inflammatory breast cancer were not included.

P = prospective; BC = breast cancer; US = ultrasonography; BS = bone scintigraphy; LN = lymph node; R = retrospective.
imaging changed the clinical stage in 77 patients (30.3%). It showed unsuspected N3 disease (infra- or supraclavicular or internal mammary nodes) in 40 patients and distant metastases in 53 patients. When the yield was examined by subsets, PET/CT revealed distant metastases in 2.3% of patients with clinical stage IIA disease (1/44), 10.7% of patients with stage IIB disease (6/56), 17.5% of patients with stage IIIA disease (11/63), 36.5% of patients with stage IIIB disease (27/74), and 47.1% of patients with stage IIIC disease (8/17). Stage IIIA was heterogeneous. The rate of distant metastases in patients with T3N1 disease (primary operable) was similar to that in patients with stage IIB disease (T2N1/T3N0). It was much higher in patients with N2 disease and was close to that found in patients with stage IIIB disease (18). Two other studies (1 including only breast cancer patients younger than 40 y) also showed that the yield from 18F-FDG PET/CT was high starting in patients with clinical stage IIB disease (16,20).

The results of these studies provide supportive evidence for a role of 18F-FDG PET/CT in determining the stage of disease for high- and intermediate-risk patients (clinical stage IIB or higher). Some breast oncology societies have changed their guideline recommendations to include these findings. However, practices differ according to countries. In the United States, current NCCN guidelines do not recommend the systematic use of 18F-FDG PET or PET/CT in breast cancer staging but state that “18F-FDG PET/CT may be helpful in identifying unsuspected regional nodal disease or distant metastases in LABC when used in addition to standard imaging studies” (7). In France, the National Cancer Institute recommends work-up for distant sites in the case of T3, T4, or N-positive disease (38); 18F-FDG PET/CT as a single procedure is an option (38).

PET/CT has no role in patients with clinical stage I breast cancer (clinically node-negative with breast tumors of ≤2 cm), which currently represents most newly diagnosed cases. These patients receive breast surgery with sentinel node biopsy (2). PET/CT cannot be used as a substitute for sentinel node biopsy because the spatial resolution of PET instruments precludes the detection of very small nodal metastases (I–5). The probability that 18F-FDG PET will detect extranodal regional node metastases or distant metastases in early-stage disease is low, and 18F-FDG imaging exposes women to false-positive findings. In a multicenter prospective study of 325 women with operable breast cancer, 18F-FDG PET (without the CT component) suggested distant metastases in 13 patients; metastatic disease was confirmed in 3 patients (0.9%), and the findings were false-positive in 10 patients (3.0%) (4). Therefore, the use of PET/CT in such patients is unjustified and exposes women to undue costs and additional anxiety and morbidity associated with false-positive diagnoses (39).

In the study by Groheux et al. (18), the overall yield from 18F-FDG PET/CT for stage IIA disease was only 4.5% unexpected findings (2.3% distant metastases and 2.3% extranodal metastases); these results challenge the use of 18F-FDG PET/CT for stage IIA disease. In that study, stage IIA was represented mainly by T2N0 disease (patients with T1N1 disease, as determined by positive sentinel node biopsy, were not included). These data require confirmation in larger studies.

SHOULD BREAST CANCER BIOLOGY, HISTOLOGY, AND PHENOTYPE BE CONSIDERED FOR BREAST CANCER STAGING?

18F-FDG uptake depends on the histologic and biologic characteristics of the breast tumor. Invasive ductal carcinoma exhibits higher uptake than invasive lobular carcinoma (40–42). Invasive tumors with Scarff-Bloom-Richardson grade 3 exhibit higher 18F-FDG uptake than lower-grade tumors (41,42). There is also a positive correlation between the tumor proliferation index (Ki-67 expression) and the intensity of 18F-FDG uptake (41). SUVs are higher in tumors that are negative for hormone receptors (41,42).

Triple-negative breast cancer (TNBC; negative for estradiol and progesterone receptors and lacking human epidermal growth factor receptor 2 [HER2] overexpression) is usually highly 18F-FDG–avid (42,43).

Recent animal data showed that the molecular determinants of 18F-FDG uptake in breast cancer are complex and multifactorial (44). Awareness of the determinants of 18F-FDG uptake by oncologists and nuclear physicians is important because it may influence their clinical use of 18F-FDG PET/CT in breast cancer—based on the sensitivity with which they consider the modality to detect regional and distant disease spread—as well as their interpretation of the imaging results.

In the study by Riedl et al. (20), grade and receptor phenotype were found not to be related to distant metastases or extranodal lymphadenopathy. In the study by Groheux et al. (18), the rates of distant involvement did not differ according to grade or breast cancer phenotype. However, the sites of involvement differed. Patients with TNBC and HER2-positive disease had high proportions of extraskeletal metastases (18). N3 disease was more frequent in patients with grade 3 tumors, TNBC, or the HER2-positive phenotype.

Beyond the AJCC clinical stages, further studies are needed to evaluate the yield from PET/CT according to biomarkers of tumor aggressiveness. Given the high proportions of extraskeletal metastases in TNBC and HER2-positive breast cancer (18), the association of brain MRI with whole-body (WB) PET/CT should be evaluated for these subtypes. For lobular carcinoma, it is important that PET/CT interpretation be done with the knowledge that this histologic subtype has lower 18F-FDG uptake. Osteosclerotic bone lesions in a patient with lobular carcinoma...
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Type of study</th>
<th>No. of patients</th>
<th>Patient recruitment</th>
<th>Other diagnostic modalities</th>
<th>Diagnostic performance*</th>
<th>Management impact†</th>
<th>Prognosis</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radan et al. (23)</td>
<td>2006</td>
<td>R</td>
<td>46</td>
<td>Suspected recurrence on basis of rising tumor marker levels</td>
<td>ceCT (n = 37)</td>
<td>PET/CT: 27 TP (24 distant, 3 locoregional), 5 FP; Se = 90, Sp = 71, Acc = 83</td>
<td>51</td>
<td></td>
<td>PET/CT had high performance indices and was superior to ceCT for diagnosis of recurrence</td>
</tr>
<tr>
<td>Schmidt et al. (26)</td>
<td>2008</td>
<td>R</td>
<td>33</td>
<td>Suspected recurrence on basis of clinical (n = 9) or imaging (n = 14) findings or rising tumor marker levels (n = 10)</td>
<td>WB MRI 1.5 T (n = 23) or 3 T (n = 10)</td>
<td>PET/CT: Se = 91, Sp = 90, Acc = 91</td>
<td>PET/CT was superior for locoregional recurrence detection, whereas WB MRI showed excellent performance for detection of distant lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aukema et al. (28)</td>
<td>2010</td>
<td>R</td>
<td>56</td>
<td>Confirmed locoregional recurrence</td>
<td>Chest MRI, CT, or radiography; liver US; bone scanning</td>
<td>PET/CT: Se = 97, Sp = 92, Acc = 95</td>
<td>48</td>
<td></td>
<td>PET/CT played important role in staging for patients with locoregional recurrence, in addition to CIT</td>
</tr>
<tr>
<td>Evangelista et al. (30)</td>
<td>2011</td>
<td>R</td>
<td>111</td>
<td>Suspected recurrence on basis of clinical (n = 26) or imaging (n = 85) findings</td>
<td>CT, CA 15.3</td>
<td>PET/CT: Se = 81, Sp = 52, Acc = 60</td>
<td>56</td>
<td>PET/CT was independent predictor of disease relapse</td>
<td>PET/CT was more sensitive than CT and CA 15.3 for evaluation of disease relapse</td>
</tr>
<tr>
<td>Champion et al. (31)</td>
<td>2011</td>
<td>R</td>
<td>228</td>
<td>Suspected recurrence on basis of rising tumor marker levels</td>
<td>Chest radiography, abdominopelvic US, bone scanning (n = 67)</td>
<td>PET/CT: Se = 94, Sp = 85, Acc = 92</td>
<td>54</td>
<td></td>
<td>PET/CT was more sensitive than CIT for detection of recurrence in patients with rising tumor marker levels</td>
</tr>
</tbody>
</table>
should be considered suspect even when they are not 18F-FDG–avid (45).

PROGNOSTIC VALUE OF BASELINE 18F-FDG PET/CT

In the study by Groheux et al., among 189 patients with initial clinical stage IIB or higher and adequate follow-up, disease-specific survival was significantly shorter in the 47 patients found by 18F-FDG PET/CT to have M1 disease than in those with M0 disease (3-y disease-specific survival of 57% vs. 88%; $P < 0.001$) (18). In a recent publication, Cochet et al. also emphasized the prognostic value of 18F-FDG PET/CT for patients with clinical stage II or III disease (19).

Besides staging, the level of 18F-FDG uptake by a primary tumor also has prognostic value. High 18F-FDG uptake has been associated with a poorer outcome (10,46,47). Recently, high baseline tumor SUV$_{\text{max}}$ and total lesion glycolysis were associated with shorter event-free survival in patients with estrogen receptor-positive/HER2-negative breast cancer (47).

PET/CT IN RESTAGING OF BREAST CARCINOMA

Early detection and precise characterization of the extent of recurrent disease are essential for guiding optimal therapy and prognostication. Locoregional recurrence may benefit from curative treatment based on surgery or radiation therapy, whereas distant metastases usually require palliative systemic therapy (31). Breast cancer recurrence can be suggested by clinical symptoms, radiologic findings, or rising levels of tumor markers (carcinoma antigen 15.3 or carcinoembryonic antigen). In all of these situations, the accuracy of PET/CT has been shown to be high (Table 3).

Table 3 (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Type of study</th>
<th>No. of patients</th>
<th>Patient recruitment</th>
<th>Other diagnostic modalities</th>
<th>Diagnostic performance*</th>
<th>Management impact†</th>
<th>Prognosis</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al. (33)</td>
<td>2014</td>
<td>R</td>
<td>140</td>
<td>Suspected recurrence ($n = 71$) or routine follow-up ($n = 69$)</td>
<td>For suspected recurrence: Se = 88, Sp = 87, Acc = 87</td>
<td>49 (suspected recurrence)</td>
<td>PET/CT was useful for early diagnosis of recurrence and might be useful for follow-up in asymptomatic patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cochet et al. (34)</td>
<td>2014</td>
<td>R</td>
<td>63</td>
<td>Suspected recurrence ($n = 58$) or routine follow-up ($n = 5$)</td>
<td>Chest CT or radiography; abdominopelvic MRI, CT, or US; bone scanning</td>
<td>PET/CT: NPV = 86, PPV = 95</td>
<td>57</td>
<td>PET/CT provided incremental information that influenced management and refined prognostic stratification</td>
<td></td>
</tr>
<tr>
<td>Di Gioia et al. (35)</td>
<td>2015</td>
<td>P</td>
<td>44</td>
<td>Suspected recurrence on basis of rising tumor marker levels</td>
<td>WB MRI 1.5 T ($n = 43$)</td>
<td>WB imaging (MRI or PET/CT) accurately detected metastases in 28 patients (64%), including 7 patients with oligometastatic disease, and secondary malignancy in 6 patients (14%)</td>
<td>Survival differed according to subtype</td>
<td>WB imaging was highly effective for early detection of recurrence in asymptomatic patients with confirmed rise in tumor marker levels</td>
<td></td>
</tr>
</tbody>
</table>

*Reported as percentages for sensitivity (Se), specificity (Sp), accuracy (Acc), negative predictive value (NPV), and positive predictive value (PPV).
†Reported as percentages of patients for whom findings had impact on management.

R = retrospective; ceCT = contrast-enhanced CT; TP = true-positive; FP = false-positive; US = ultrasonography; CIT = conventional imaging techniques; CA 15.3 = carcinoma antigen 15.3; P = prospective.
higher with the development of local control strategies for oligometastatic disease, such as surgery or stereotactic radiotherapy (53,54). Among patients with evidence of distant relapse, PET/CT may identify oligometastatic status in a significant proportion (35).

Most studies have retrospectively evaluated the incremental role of 18F-FDG PET/CT, in addition to conventional methods, in the diagnostic work-up of breast cancer relapse. Uncertainty remains about its utility as a replacement for conventional work-up rather than as an adjunct to conventional imaging (49). The potential roles of combined PET and whole-body MRI and contrast-enhanced PET/MRI are being investigated (35).

Although PET/CT offers the opportunity to provide an overview of disease in a single procedure (22–35), its use as a first-line method is not recommended in international guidelines. NCCN guidelines recommend that chest CT, abdominopelvic CT or MRI, and bone scanning be performed first; 18F-FDG PET/CT is considered optional and “most helpful in situations where standard staging studies are equivocal or suspicious” (7). The European Society for Medical Oncology recommends that 111In-DTPA–PACIT PET/CT can be useful for identifying the site of relapse when traditional methods are equivocal or conflicting” (56).

With regard to surveillance, American Society of Clinical Oncology and NCCN guidelines recommend only regular history, physical examination, and mammography for breast cancer routine follow-up (7,57). Systematic 18F-FDG PET/CT is not indicated. In a recent study, Chang et al. described a change in planned management in 10% of patients receiving PET/CT for routine follow-up without suspected relapse before imaging (33).

The role of systematic PET/CT examination in subgroups of patients with a high risk of early relapse should be analyzed in a multicenter prospective study. One such subgroup could be patients who have TNBC but for whom a complete pathologic response was not achieved after neoadjuvant chemotherapy. Of 51 patients with TNBC who had no distant metastases at baseline PET but had residual disease after neoadjuvant chemotherapy, 21 experienced a relapse within a few years (17 developed distant metastases) (32).

CONCLUSION

18F-FDG PET/CT is useful for staging locally advanced and inflammatory breast cancer. One advantage of 18F-FDG PET/CT over conventional imaging is that it allows the examination of extraaxillary nodes as well as the chest, abdomen, and bone in a single session. The yield from PET/CT is also substantial in patients with clinical stage IIB (T2N1 and T3N0) and primary operable stage IIA (T3N1) breast carcinomas; further studies with cost-effectiveness assessments would be helpful. PET is definitely not recommended for the initial assessment of patients with clinical T1N0 breast cancer.

18F-FDG PET/CT is also useful for detecting recurrence and for restaging in breast cancer patients by providing incremental information that can influence management and refine prognostic stratification. Randomized trials comparing 18F-FDG PET/CT and conventional imaging as initial restaging procedures are needed. The interest in 18F-FDG PET/CT will increase with the development of local control strategies for oligometastatic disease.
DISCLOSURE

No potential conflict of interest relevant to this article was reported.

REFERENCES

18F-FDG PET/CT for Staging and Restaging of Breast Cancer

David Groheux, Alexandre Cochet, Olivier Humbert, Jean-Louis Alberini, Elif Hindié and David Mankoff

Doi: 10.2967/jnumed.115.157859

This article and updated information are available at:
http://jnm.snmjournals.org/content/57/Supplement_1/17S

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml