Assessment of Minimum 124I Activity Required in Uptake Measurements Before Radioiodine Therapy for Benign Thyroid Diseases

Anja S. Gabler, Christian Kühnel, Thomas Winkens, and Martin Freesmeyer

Clinic of Nuclear Medicine, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany

This study aimed to assess a hypothetical minimum administered activity of 124I required to achieve comparability between pretherapeutic radioiodine uptake (RAIU) measurements by 124I PET/CT and by 131I RAIU probe, the clinical standard. In addition, the impact of different reconstruction algorithms on 124I RAIU and the evaluation of pixel noise as a parameter for image quality were investigated. Methods: Different scan durations were simulated by different reconstruction intervals of 600-s list-mode PET datasets (including 15 intervals up to 600 s and 5 different reconstruction algorithms: filtered-backprojection and 4 iterative techniques) acquired 30 h after administration of 1 MBq of 124I. The Bland–Altman method was used to compare mean 124I RAIU levels versus mean 3-MBq 131I RAIU levels (clinical standard). The data of 37 patients with benign thyroid diseases were assessed. The impact of different reconstruction lengths on pixel noise was investigated for all 5 of the 124I PET reconstruction algorithms. A hypothetical minimum activity was sought by means of a proportion equation, considering that the length of a reconstruction interval equates to a hypothetical activity. Results: Mean 124I RAIU and 131I RAIU already showed high levels of agreement for reconstruction intervals of as short as 10 s, corresponding to a hypothetical minimum activity of 0.017 MBq of 124I. The iterative algorithms proved generally superior to the filtered-backprojection algorithm. 124I RAIU showed a trend toward higher levels than 131I RAIU if the influence of retrosternal tissue was not considered, which was proven to be the cause of a slight overestimation by 124I RAIU measurement. A hypothetical minimum activity of 0.5 MBq of 124I obtained with iterative reconstruction appeared sufficient both visually and with regard to pixel noise. Conclusion: This study confirms the potential of 124I RAIU measurement as an alternative method for 131I RAIU measurement in benign thyroid disease and suggests that reducing the administered activity is an option. CT information is particularly important in cases of retrosternal expansion. The results are relevant because 124I PET/CT allows additional diagnostic means, that is, the possibility of performing fusion imaging with ultrasound. 124I PET/CT might be an alternative, especially when hybrid 124I SPECT/CT is not available.

Key Words: 124I; 124I PET; reconstruction parameters; pretherapeutic uptake measurement; benign thyroid disorders

DOI: 10.2967/jnumed.115.171066

Radiiodine therapy (RAIT) with 131I is a relevant intervention because of the high prevalence of benign thyroid diseases (1). Although pretherapeutic radioiodine uptake (RAIU) measurement is usually performed with a 131I probe and is considered the clinical standard, a recent study on the correlation between 131I probe RAIU measurement and 124I PET/CT RAIU measurement has shown that application of as little as 1 MBq of 124I provides RAIU results comparable to those obtained with 3 MBq of 131I (2). Thus, 124I PET/CT may become a good alternative for routine evaluations of RAIU in patients with benign thyroid disease, especially because 124I PET/CT may provide additional diagnostic information. Indeed, the functional anatomy shown by 124I PET is superior to that shown by conventional 99mTc-sulfur colloid scintigraphy (3). Also, the 124I RAIU method allows a time-efficient PET-based organ volumetry (4). In addition, there exists the possibility of performing PET/ultrasound image fusion (5–7).

Different activities in one patient can be simulated by obtaining a 124I PET/CT scan in list-mode technique and equating reduction of scan time with reduction of activity. The focus of this study was to assess only the uptake aspect of RAIU. No information was obtained about the effective half-life aspect of RAIU. The goals of this study were to assess a hypothetical minimum activity that will achieve comparable results between 124I RAIU measurement and the clinical standard, 131I RAIU measurement; to determine the influence of different reconstruction algorithms on 124I RAIU measurement; and to evaluate pixel noise as a parameter for image quality.

MATERIALS AND METHODS

Patients and Ethics

The study included consecutive patients with benign thyroid diseases referred to our institution from April 2012 to June 2014 in preparation for RAIT. The study was designed as a subanalysis within a larger prospective study approved by the local ethics committee and the German Federal Office of Radiation Protection. All participants signed a written informed consent form.

Study Protocol

Thyroid Diagnostics. The initial thyroid diagnostic was performed according to current guidelines (anamnesis; measurement of thyroid-stimulating hormone, free T3, and free T4; neck ultrasound; and planar 99mTc-pertechnetate scintigraphy) (8–10).

Inclusion and Exclusion Criteria. Criteria for inclusion were the diagnosis of a benign thyroid disease potentially requiring treatment (e.g., RAIT with the aim of volume reduction). Patients were excluded if they had received thyroid-specific treatment in the previous 12 wk, if their anamnesis was positive for iodine contamination, or if a

© 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
relevant change in thyroid metabolism (as assessed by thyroid-stimulating hormone levels) occurred between the investigations.

Tracer Preparation. Sodium-131I solution (GE Healthcare) and sodium-124I tracer solution (BV Cyclotron VU) were poured into identical capsules (HGK, size 3; GE Healthcare) on a crystalline carrier. The tracer activity of the test capsules was measured using a dose calibrator (IsoMed 2010; MED Nuklear-Medizintechnik).

Tracer Administration and RAIU Measurement Schedule. Oral administration of 131I capsules (3 MBq) was performed first; 124I capsules (1 MBq) were administered 7–14 d later. Each RAIU was measured 30 h after administration. Before this study, phantom experiments demonstrated that residual 131I does not interfere with quantification of 124I in PET/CT examination (2).

131I Probe Measurement. The activity in patients was measured using an ISOMED 2162 thyroid uptake counter (MED Nuklear-Medizintechnik). The measuring distance between detector and neck was kept at 45 cm using a spacer. The detector fitted with an NZ-136-01 collimator (MED Nuklear-Medizintechnik) had dimensions of 5 × 5 cm and was connected to a multichannel analyzer through a photomultiplier tube. For quality assurance purposes, each measurement was preceded by a check of the energy spectrum using a 137Cs test source, as well as by measurement of the background activity. The determined lower limit of detectability was 7 Bq.

124I PET/CT. 124I PET/CT scans were acquired using a Biograph mCT 40 system (Siemens). The scans were scheduled late in the afternoon following clinical routine to ensure a high adherence to the appointed date. 124I PET imaging was performed in list-mode acquisition by continuous scanning for 600 s, with every measured value stored as raw data with an exact time stamp to allow reconstruction of intervals of different length as static images, simulating scan intervals of different length.

Patients were scanned supine at one bed position. The scan region included the whole neck and the upper thorax. Anatomic coregistration and attenuation correction were performed using a native CT scan at its included the whole neck and the upper thorax. Anatomic coregistration and quantification using the volume-of-interest (VOI) technique. A cylinder-shaped VOI was placed on the neck, ensuring that the mandible and any retrosternal thyroid parts were included, enabling the measurement of any activity within this region (Fig. 1) (2). Mean activity concentration (kBq/mL) and its SD were measured in each VOI. A background correction VOI was not used because of the high specific uptake within the thyroid compared with surrounding tissue. 124I RAIU was calculated by dividing measured activity within the VOI by applied activity. In analogy to other studies, a correction of the measured activities based on the difference in decay between 124I and 131I was performed, allowing a comparison of the activities of the two radionuclides (2).

Data Analysis

Comparison of 131I RAIU and 124I RAIU. The impact of the length of RI (as a surrogate for the scanning duration) was assessed for the 5 124I PET reconstruction algorithms in terms of consistency with the 131I RAIU measurement (Fig. 2). A slightly modified version of the Bland–Altman method was applied to estimate the degree of consistency between the 131I RAIU and 124I RAIU determined by means of the 5 different reconstruction algorithms (11). In short, relative uptake differences were calculated between 124I RAIU and 131I RAIU. A subanalysis was performed splitting the patients into 2 subgroups, one without and the other with retrosternal thyroid tissue (Figs. 2B and 2C).

Image Quality. Two image quality aspects were considered. First, visual inspection of the 124I PET/CT images was performed for the different RI and reconstruction algorithms but not routinely analyzed in terms of visual scoring, because visual assessment is subjective. Therefore, we decided to use a second, objective parameter.

It is generally accepted that high pixel noise contributes to low image quality (12). In our setting, reducing the RI leads to an increase in pixel noise and in turn a decrease in image quality. As an approach to objectify pixel noise, we measured the SD of the activity concentration within the VOI. Finally, SD and pixel noise were observed to increase in this study, corresponding with low image quality. This is exclusively influenced by length of RI and reconstruction algorithm. Since the experience in our institution shows that 1 MBq of 124I at a 600-s scan time provides sufficient images in all cases, it serves as a reference for image quality in this study (2,3). We tested a limit of 10% change in SD to obtain

\begin{table}
\centering
\caption{Overview of Reconstruction Algorithms and Parameters}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Parameter & FBP & IT-1 & IT-2 & IT-3 & IT-4 \\
\hline
Matrix & 512 & 512 & 512 & 128 & 512 \\
Iterations & NA & 4 & 4 & 4 & 1 \\
Subsets & NA & 24 & 24 & 24 & 12 \\
Zoom & 2 & 2 & 1 & 1 & 2 \\
\hline
\end{tabular}
\end{table}

124I PET Reconstruction Algorithms. We tested a limit of 10% change in SD to obtain

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Transversal (A) and sagittal (B) 124I PET/CT images (IT-1 reconstruction; 600 s), with cylinder-shaped VOI indicated by yellow line.}
\end{figure}
images with probable acceptable quality. The length of the RI at an SD increase of 10% or less was defined as the RI of acceptability (RIacc), and this corresponds to a hypothetical minimum activity (Fig. 3; Table 2). The image quality is proportional to the PET scanning time and the activity contained in the scan field of view. Doubling the activity of a PET radiopharmaceutical leads to halving the scanning time, and halving the activity contained in the scan volume requires doubling the scanning time, resulting in the same image quality (13). Accordingly, the determination of RIacc allows the calculation of a hypothetical minimum activity (Amin) by means of a proportion equation (Eq. 1):

$$A_{\text{min}} = \frac{1 \text{ MBq}}{600 \text{ s}} \cdot \text{RIacc}.$$

Therefore, in the presented setting of 600 s and 1 MBq of 124I, an RIacc of 300 s is equal to a hypothetical activity of 0.5 MBq of 124I.

RESULTS

Patients

Of 97 patients screened, 56 fulfilled the inclusion criteria and 37 agreed to participate in the study (Table 3). Part of the data was reported in a previous study (2). All participants were fully examined according to protocol. The mean orally administered activities were 3.03 ± 0.13 MBq for 131I and 1.02 ± 0.03 MBq for 124I. The interval between administrations was 10.0 ± 3.1 days. On average, the 131I RAIU measurements took place at 30.6 ± 2 min after oral administration of the tracer, and the 124I RAIU measurements took place at 30.5 ± 5 min. The mean 131I RAIU measured after 30 h was $29.1\% \pm 9.8$, and the mean 124I RAIU (IT-1; 600-s RI) measured after 30 h was $29.6\% \pm 9.1$.

Comparison of 131I RAIU and 124I RAIU

A comparison of 131I RAIU and 124I RAIU for all patients showed a trend toward overestimation by 124I PET/CT (Fig. 2A). Therefore, a subanalysis of patients without (Fig. 2B) and with (Fig. 2C) retrosternal tissue was performed. The nonretrosternal subgroup showed a good agreement between the 2 RAIU measurements. There was hardly any systematic variability irrespective of the RI and algorithm. The retrosternal subgroup displayed higher 124I RAIU levels for all reconstruction algorithms, revealing a systematic overestimation.

For 124I PET reconstruction algorithms in all patients (Fig. 2A) and in the nonretrosternal subgroup (Fig. 2B), the limits of agreement were fairly concordant; however, a slight enlargement was observed for the RI between 10 and 60 s. In general, the reconstruction data obtained with the FBP showed a more pronounced enlargement of the limits of agreement than did the data obtained by IT (Fig. 2).

Image Quality

Figure 3 shows an exponential increase in SD at shorter RIs. This increase was more pronounced for FBP than for IT. The RIacc was reached from 131 s to 456 s, and the calculated hypothetical minimum activity was reached from 0.22 MBq to 0.76 MBq (Fig. 3; Table 2). Image quality was still good at 300 s (Fig. 4A), but reducing the number...
of subsets (IT-4) as well as using FBP lowered image quality visually (Fig. 4B).

DISCUSSION

Different radiiodine isotopes are available for thyroid diagnostics. Hybrid imaging leads to additional benefits (connection between anatomic and functional imaging). 124I and 131I require a SPECT/CT scanner and 124I a PET/CT scanner. However, in many institutions one of these two types of scanners is available. If it is not possible to use SPECT/CT, 124I PET/CT forms a suitable alternative.

As the thyroid RAIU is comparably specific and intense, 124I PET/CT images obtained with low activity are of good visual quality compared with 124I PET/CT performed in patients with metastasized differentiated thyroid cancer after thyroid removal or remnant ablation. Moreover, recent 124I RAIU measurement studies indicate that an activity of 1 MBq and a scan time of 600 s generate a visually sufficient image for diagnostics and allow reliable RAIU measurement (2,3). Concerning radiation exposure of 124I RAIU evaluation with 1 MBq, a thyroid uptake of 25% is associated with an effective whole-body equivalent dose of about 6.5 mSv considering that about 0.3 mSv is contributed by the low-dose CT and the thyroid organ dose is 260 mGy (8,14). In comparison, the effective whole-body equivalent dose resulting from 131I RAIU evaluation with 3 MBq is about 33 mSv, and the thyroid organ dose is 1,290 mGy (8,14). Therefore, radiation exposure caused by 124I RAIU measurement is approximately one fifth of that of 131I RAIU measurement. However, the radiation exposure aspect is somewhat relative concerning the following RAIT. Moreover, in the past, activities of as low as 0.2 MBq have been shown to be sufficient for 131I RAIU measurement (15). In the presented setting, standard activities of 3 MBq of 131I were used according to current guidelines (9,10). However, 124I activity reduction may be desirable for decreasing the inherent material costs. The present study sought to verify the effects of a hypothetical reduction of 124I activity on 124I RAIU and pixel noise, as well as the role of different reconstruction algorithms. The investigational use of different activities was not feasible because of the clear methodologic constraints caused by the additional exposure for individual participants; therefore, we chose an indirect methodologic approach determining hypothetical minimum activities.

Simulating different scan times with the help of list-mode data (Eq. 1) did not show a difference between mean 124I RAIU and 131I RAIU. However, images of the 10-s RI are visually insufficient (Fig. 4A). Therefore, the difference between 124I RAIU and 131I RAIU cannot be used as a parameter to determine a reasonable lower limit for 124I activity.

The subgroup analysis separately investigating patients without and with retrosternal thyroid tissue proved that the slight trend toward higher 124I RAIU is caused by patients with retrosternal tissue only (Fig. 2). In fact, 131I RAIU measurement may be associated with some γ-absorption in the sternum and hence in underestimation of RAIU. In addition, 131I RAIU measurement may not completely include the whole retrosternal part because positioning is not image-guided, probably resulting again in underestimation of the RAIU. 124I RAIU measurement, in contrast, always identifies possible retrosternal portions and includes them in the RAIU measurement. The trend toward higher 124I RAIU was more pronounced at shorter RIs (10–60 s), leading to a slight statistical deviation. This finding is difficult to assess; a conceivable explanation lies in the IT calculation model.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>R_{acc} (s)</th>
<th>Calculated hypothetical minimum 124I activity (MBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBP</td>
<td>456</td>
<td>0.76</td>
</tr>
<tr>
<td>IT-1</td>
<td>287</td>
<td>0.48</td>
</tr>
<tr>
<td>IT-2</td>
<td>282</td>
<td>0.47</td>
</tr>
<tr>
<td>IT-3</td>
<td>184</td>
<td>0.31</td>
</tr>
<tr>
<td>IT-4</td>
<td>131</td>
<td>0.22</td>
</tr>
</tbody>
</table>

TABLE 2
RIacc and Calculated Hypothetical Minimum Activity for Different Reconstruction Algorithms

<table>
<thead>
<tr>
<th>Characteristic Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
</tr>
<tr>
<td>Median 75 (52–85)</td>
</tr>
<tr>
<td>Mean ± SD 73.3 ± 7.3</td>
</tr>
<tr>
<td>Female (n) 24 (64.9%)</td>
</tr>
<tr>
<td>Thyroid disorder (n)</td>
</tr>
<tr>
<td>Unifocal autonomy 6 (16.2%)</td>
</tr>
<tr>
<td>Multifocal autonomy 18 (48.6%)</td>
</tr>
<tr>
<td>Nontoxic goiter 13 (35.2%)</td>
</tr>
<tr>
<td>Thyroid volume (mL)</td>
</tr>
<tr>
<td>Median 87.5 (24–299)</td>
</tr>
<tr>
<td>Mean ± SD 103 ± 60</td>
</tr>
<tr>
<td>Retrosternal part (n) 12 (32.4%)</td>
</tr>
<tr>
<td>Thyroid-stimulating hormone (mU/mL)</td>
</tr>
<tr>
<td>Median before 131I RAIU measurement 0.33 (0.01–2.86)</td>
</tr>
<tr>
<td>before 124I RAIU measurement 0.33 (0.01–2.71)</td>
</tr>
<tr>
<td>Mean ± SD before 131I RAIU measurement 0.54 ± 0.84</td>
</tr>
<tr>
<td>before 124I RAIU measurement 0.52 ± 0.77</td>
</tr>
</tbody>
</table>

Data in parentheses are range or percentage.
The impact of the RI length on the increase in pixel noise was examined as a parameter of image quality, given that very short scanning times (simulated by short RIs) are associated with a higher background noise and poorer image quality (17–20). The concept of using an increase in SD as a parameter of image quality was chosen because an exact assessment of image quality with parameters such as spatial resolution, signal-to-noise ratio, or noise-equivalent counting rate was not applicable to the underlying in vivo data (21,22). These parameters can reliably be determined only by using a phantom with defined focal hot and cold spots of different sizes. A modified neck-shaped Jaszczak-phantom meeting the needs of the proposed study setting is currently being constructed in our clinic, and corresponding studies are planned.

During the last few years, we used 1 MBq of 124I for imaging of benign thyroid diseases in unclear situations with guideline-conforming thyroid diagnostics (2,3). Through these experiences, we know that activities of as low as 1 MBq produce high-quality PET/CT images that clearly depict thyroid metabolism and are sufficient for image fusion with ultrasound (23,24). Because a deviation of $\pm 10\%$ in terms of applied activity is usually accepted in nuclear medicine, we allowed a 10% increase in the SD of mean uptake with regard to the 600-s RI, which is the locally established reconstruction algorithm. An increase in SD was considered a surrogate parameter for pixel noise and, thus, representative of image quality. The length of the RI at which all patients show an SD increase of no more than 10% is 287 s for IT-1, and this corresponds to a hypothetical minimum activity of 0.48 MBq (Table 2). Thus, it can be concluded that activities of as low as 0.5 MBq might be sufficient for good-quality images.

Visual interpretation in terms of visual scoring was not a focus of the current study. However, it is important to look at these images because diagnostics rely on visual assessment. An example of the influence of different RI and reconstruction algorithms is shown for one patient in Figure 4. Given that 124I PET/CT can be used for PET/ultrasound fusion imaging, it is important to obtain a sufficiently high image quality (23,24). Images with an RI of 300 s still are appropriate to clearly define thyroid metabolism in the chosen example (Fig. 4A). Decreasing the RI length leads to a significant loss in image quality. As expected, it can be concluded that FBP is inferior to IT with regard to image quality, as has been extensively reported previously (25,26). Additionally, the reduction of equivalent iterations, that is, the product of iterations and subsets (IT-4), softens the image on the one hand but leads to increased blurring and therefore reduced image quality on the other hand (27–29). IT-1 to IT-3 do not differ with regard to image quality; therefore, we assume that zoom and matrix do not directly influence the image quality.

Limitations

The present study had some clear limitations. The number of patients was limited, and the benign thyroid diseases were of different types. Because this research was designed as an initial subanalysis within a larger study, results were valid only for a time point of 30 h after radioiodine administration. Kinetic information (i.e., information on effective half-life) that would be available in the case of multiple RAIU measurements was not obtained with the present data. Because a comparison with intra-therapeutic measurements was not performed, conclusions on the superiority of 124I RAIU over 131I RAIU are not possible. Because the study focused on activity, the functional topography of hypo- or hyperfunctional areas was not systematically considered. These aspects are nonetheless important for the use of PET/CT or PET/ultrasound image fusion. Finally, a routine 124I RAIU measurement is hindered by several factors. The use of 124I PET/CT is complex and not ubiquitously available and, compared with a 131I probe, considerably more expensive regarding the length of the examination and the price of 124I, which in our institution is about 20% higher than the price of 131I. The use of very low activities might lower the cost (2).

CONCLUSION

The present study confirmed the potential of 124I PET/CT as an alternative method for RAIU measurement in patients with benign thyroid diseases, and this irrespective of additional benefits such as improved information on functional anatomy, reliable volumetry, and the possibility of performing image fusion with ultrasound. A hypothetical activity reduction to approximately 0.5 MBq of 124I obtained with the locally established reconstruction algorithm IT-1 appeared sufficient when considering pixel noise in parallel. Further studies with more time points, higher patient numbers, and clearly defined disease groups divided by uptake level are warranted, especially if validated by intratherapeutic measurements.

DISCLOSURE

The costs of publication of this article were defrayed in part by the payment of page charges. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734. No potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

We thank Dr. Ernesta Palombo-Kinne for help in reviewing and translating the manuscript, Dominik Driesch for analyzing the data, and Julian Westphal for providing support.
REFERENCES

Assessment of Minimum 124I Activity Required in Uptake Measurements Before Radioiodine Therapy for Benign Thyroid Diseases

Anja S. Gabler, Christian Kühnel, Thomas Winkens and Martin Freesmeyer

Published online: March 16, 2016.
Doi: 10.2967/jnumed.115.171066

This article and updated information are available at: http://jnm.snmjournals.org/content/57/8/1201

Information about reproducing figures, tables, or other portions of this article can be found online at: http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at: http://jnm.snmjournals.org/site/subscriptions/online.xhtml