Monitoring Therapy Response of Experimental Arthritis with Radiolabeled Tracers Targeting Fibroblasts, Macrophages, or Integrin αvβ3

Samantha Y.A. Terry1,2, Marije I. Koenders3, Gerben M. Franssen1, Tapan K. Nayak4, Anne Freimoser-Grundschober5, Christian Klein1,5, Wim J. Oyen1, Otto C. Boerman1, and Peter Laverman1

1Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; 2Department of Imaging Chemistry and Biology, King’s College London, London, United Kingdom; 3Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands; 4Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and 5Roche Innovation Center Zurich, Zurich, Switzerland

Rheumatoid arthritis is an autoimmune disease resulting in chronic synovial inflammation. Molecular imaging could be used to monitor therapy response, thus enabling tailored therapy regimens and enhancing therapeutic outcome. Here, we hypothesized that response to etanercept could be monitored by radionuclide imaging in arthritic mice. We tested 3 different targets, namely fibroblast activation protein (FAP), macrophages, and integrin αvβ3. Methods: Male DBA/1J mice with collagen-induced arthritis were treated with etanercept. SPECT/CT scans were acquired at 1, 24, and 48 h after injection of 111In-RGD2 (integrin αvβ3), 111In-anti-F4/80-A3-1 (antimurine macrophage antibody), or 111In-28H1 (anti-FAP antibody), respectively, with nonspecific controls included. Mice were dissected after the last scan, and scans were analyzed quantitatively and were correlated with macroscopic scoring. Results: Experimental arthritis was imaged with 111In-28H1 (anti-FAP), 111In-anti-F4/80-A3-1, and 111In-RGD2. Tracer uptake in joints correlated with arthritis score. Treatment decreased joint uptake of tracers from 23 ± 15, 8 ± 4, and 2 ± 1 percentage injected dose per gram (%ID/g) at 11 ± 11 (%ID < 0.001), 4 ± 4 (%ID < 0.001), and 1 ± 0.2 %ID/g (P < 0.01) for 111In-28H1, 111In-anti-F4/80-A3-1, and 111In-RGD2, respectively. Arthritis-to-blood ratios (in mice with arthritis score 2 per joint) were higher for 111In-28H1 (5.5 ± 1; excluding values > 25), 111In-anti-F4/80-A3-1 (10.4 ± 4), and 111In-RGD2 (7.2 ± 1) than for control 111In-DP47GS (0.7 ± 0.5; P = 0.002), 111In-rat IgG3b (0.5 ± 0.2; P = 0.002), or coinjection of excess RGD2 (3.5), indicating specific uptake of all tracers in arthritic joints. Conclusion: 111In-28H1, 111In-anti-F4/80-A3-1, and 111In-RGD2 can be used to specifically monitor the response to therapy in experimental arthritis at the molecular level. Further studies, however, still need to be performed.

Key Words: experimental arthritis; fibroblast activation protein; macrophages; RGD peptide; therapy response

J Nucl Med 2016; 57:467–472
DOI: 10.2967/jnumed.115.162628

Rheumatoid arthritis is an autoimmune disease with a global prevalence of 0.24% in 2010 (1). Arthritis is marked by symptoms including joint pain and swelling caused by chronic inflammation in synovial joints and can be treated systemically or intraarticularly by either nonsteroidal antiinflammatory drugs, corticosteroids, or disease-modifying antirheumatic drugs (DMARDs) (2,3). In addition, treatment with biologicals has been shown to be quite effective in patients.

Because arthritis is a chronic disease characterized by disease exacerbations (4), it has become crucial to develop tools to effectively monitor disease progression, prevent progressive destruction, and predict or monitor response to therapy, which are as important for a positive outcome as early diagnosis. Monitoring response to therapy could allow for the therapeutic schedules—aimed to reduce inflammation, relieve pain, and reduce disabilities—to be altered if deemed necessary. This could thus minimize unwarranted side effects and irreversible joint damage. This is especially pertinent for therapies such as DMARDs, in which it can take several weeks to months for clinical improvements to show (5).

Many cell types that play a role in joint inflammation and destruction are present in the synovial lining. One of the most prominent cell populations is the activated bone-like synoviocytes (6), which express fibroblast activation protein (FAP) (7) and could be imaged by micro-SPECT using radiolabeled antibodies against FAP, as shown by us recently (8). Other cell types include osteoclasts (9), which express integrin αvβ3 (10). Integrin αvβ3 is a much-used target for imaging tumor cells and angiogenesis in oncology using radiolabeled RGD peptides. Preclinically, F4/80 receptor–positive macrophages also play a role in arthritis pathogenesis (11). These targets have previously been successfully imaged by either radiolabeled RGD-based peptides (12) or an anti-F4/80-A3-1 labeled with 111In (13), albeit in an oncologic setting.

Noninvasive imaging could be a great tool in determining early on whether therapies are successful (14,15), yet few approaches have been aimed at a molecular level specific for arthritis. Here, we focused on imaging these 3 different targets, namely FAP, macrophages, and integrin αvβ3, and determined whether they could be useful tools to monitor response to the tumor necrosis factor (TNF) receptor fusion protein etanercept therapy in arthritic mice. These targets were also chosen because the treatment used here, etanercept, targets TNF, which is produced mainly by monocyte-macrophages, activated endothelial cells, which also express integrin αvβ3 (16), and synovial fibroblasts (17).
MATERIALS AND METHODS

Antibody Conjugation and RGD Peptide

Rat antinouse anti-F4/80-A3-1 antibody (AbD Serotec) and rat IgG2b (R&D Systems) were dialyzed against 1:1 phosphate-buffered saline (pH 7.4)/water to remove sodium azide. Antibodies 28H1 (anti-FAP), DP47GS (8), anti-F4/80-A3-1, and rat IgG2b (13) were conjugated with isothiocyanatobenzyl–diethylenetriaminepentaacetic acid (p-SCN-Bz-DTPA) (Macrocyclics, Inc.) in 0.1 M NaHCO3, pH 9.5, using a 5-fold (28H1, DP47GS) or 10-fold (anti-F4/80-A3-1, IgG2b) molar excess of p-SCN-Bz-DTPA for 1 h at room temperature. Unconjugated p-SCN-Bz-DTPA was removed by dialysis against 0.25 M ammonium acetate buffer, pH 5.5 (28H1, DP47GS), or 0.1 M 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 (anti-F4/80-A3-1, IgG2b). DP47GS and rat IgG2b antibodies served as isotype controls for 28H1 and anti-F4/80-A3-1, respectively. DOTA-E-[ε-(RGDfK)2] (RGD2) was acquired from Peptides International. Here we used the 28H1 and DP47GS antibodies, which are noninternalizing antibodies bearing a mutation in the Fc effector part, preventing binding to the Fc receptor. All buffers used were metal-free.

The affinity of all 3 tracers and the immunoreactive fraction of anti-F4/80-A3-1 (75%) have been determined previously (8,13,16). The immunoreactive fraction for 111In-28H1 was 91.4% (Supplemental Fig. 1; supplemental materials are available at http://jnm.snjmjournals.org).

Radiolabeling

For radiolabeling, 750 µg of DTPA-28H1 or DTPA-DP47GS were incubated with 250–320 MBq of 111InCl3 (Mallinkrodt BV) in 0.1 MES buffer (pH 5.4) for 30 min at room temperature. For studies involving anti-F4/80-A3-1 or rat IgG2b, 280–320 MBq of 111InCl3 (Mallinkrodt) were added to 140 µg of DTPA-anti-F4/80-A3-1 or 125 µg of rat IgG2b for 1 h at room temperature in 0.1 MES buffer (pH 5.4). For studies involving RGD2, 8 µg of DOTA-conjugated peptide, dissolved in 0.1 M MES buffer (pH 5.4), were incubated with 200 MBq of 111InCl3 for 20 min at 95 °C. Unincorporated 111In was complexed by adding ethylenediaminetetraacetic acid (final concentration of 5 mM) after the labeling.

Labeling efficiencies of all antibodies and the RGD2 peptide were determined by instant thin-layer chromatography on instant thin-layer chromatography silica gel strips (Agilent Technologies), with 0.1 M acetate buffer, pH 5.4, as the mobile phase. Labeling efficiencies were 93%, 99%, 91%, 95%, and 99% for 111In-DTPA-28H1, 111In-DTPA-DP47GS, 111In-anti-F4/80-A3-1, 111In-rat IgG2b, and 111In-RGD2, respectively. Tracers were diluted with phosphate-buffered saline (with 0.5% bovine serum albumin), and unlabeled antibody or peptide was added to obtain the required antibody or peptide dose.

Animal Model

Mice (22–25 g) were housed in individually ventilated cages, with 5 mice per cage in a temperature- and humidity-controlled room with 12/12-h light/dark cycle. Animals had unlimited access to water and food. Arthritis was induced in male DBA/1J mice by intradermal injection of 50 µg of bovine type II collagen (CII) in Freund’s complete adjuvant, followed by an intraperitoneal booster injection of 50 µg of CII in phosphate-buffered saline 3 wk later (collagen-induced arthritis [CIA]). Arthritis scores per paw ranged from mild to severe (score: 0, no sign of arthritis; 0.25, 1–2 toes red or swollen; 0.5, 3–5 toes red or swollen; 1, swollen ankle; 1.5, swollen footpad; 2, severe swelling and ankylosis). Etanercept treatment (10 mg/kg, 3× per week, intraperitoneally) started when the mice showed the first signs of the onset of arthritis (score ≥ 0.25 in 1 joint). Untreated arthritic mice were used as a control. Animal experiments were approved by the local animal welfare committee and performed according to national regulations.

Biodistribution Studies

In dose-finding studies, arthritic male DBA/1J mice were injected intravenously with either 10 or 40 µg of 111In-anti-F4/80-A3-1 or 111In-IgG2b, as done previously for 111In-28H1, and the biodistribution was measured by ex vivo analysis of the accumulation of the tracer in different organs and joints after dissection of the mice. In other biodistribution studies, treated and untreated male mice were injected intravenously with 50 µg of 111In-DTPA-28H1 or 111In-DTPA-DP47GS, 10 µg of 111In-anti-F4/80-A3-1 or 111In-rat IgG2b, or 1 µg (radiolabeled) or 50 µg (1 µg + 49 µg unlabeled) of 111In-RGD2 (3–4 MBq). At 48 h (111In-DTPA-28H1 and 111In-DTPA-DP47GS), 24 h (111In-anti-F4/80-A3-1 and 111In-rat IgG2b), and 1 h (111In-RGD2) after tracer injection, mice were euthanized by CO2/O2 asphyxiation. Ten mice were used per group for which blood, articular joints, and major organs and tissues were dissected, weighed, and counted in a shielded well-type γ-counter (Perkin-Elmer) to provide the percentage injected dose per gram (%ID/g).

Micro-SPECT/CT Imaging

In imaging studies, treated and untreated male mice were injected intravenously with 50 µg of 111In-DTPA-28H1 or 111In-DTPA-DP47GS, 10 µg of 111In-anti-F4/80-A3-1 or 111In-rat IgG2b, or 1 µg (radiolabeled) or 50 µg (1 µg + 49 µg unlabeled) of 111In-RGD2 (15–21 MBq). At 48 h (111In-DTPA-28H1 and 111In-DTPA-DP47GS), 24 h (111In-anti-F4/80-A3-1 and 111In-rat IgG2b), and 1 h (111In-RGD2) after tracer injection, mice were euthanized by CO2/O2 asphyxiation for ex vivo biodistribution studies (3 mice/group). Mice were then scanned with the U-SPECT-II/CT scanner (MI Labs) while in the prone position. Micro-SPECT scans were acquired as 3 frames of 15 min using a 1.0-mm pinhole ultrahigh-sensitivity mouse collimator, followed by a CT scan for anatomic reference (65 kV, 615 µA). Scans were reconstructed and all frames combined with software from MI Labs, using an ordered-subset expectation maximization algorithm, with a voxel size of 0.4 mm. For high-resolution micro-SPECT imaging of an arthritic joint, a focal image was acquired using a 0.35-mm ultrahigh-resolution pinhole collimator at 9 frames of 18 min. Images were reconstructed to a voxel size of 0.125 mm without attenuation correction.

Quantitative SPECT Analysis

Reconstructed micro-SPECT scans were coregistered with CT images using Inveon Research WorkSpace software (version 3.0; Siemens Preclinical Solutions, LLC). The regions of interest were drawn using CT images and transferred to the SPECT data to obtain mean voxel intensities of the SPECT data corresponding to those regions of interest. Mean voxel intensity values were converted to %ID using decay correction and a standard curve (mean voxel intensity vs. kBq). Scans were reconstructed and all frames combined with software from MI Labs, using an ordered-subset expectation maximization algorithm, with a voxel size of 0.4 mm. For high-resolution micro-SPECT imaging of an arthritic joint, a focal image was acquired using a 0.35-mm ultrahigh-resolution pinhole collimator at 9 frames of 18 min. Images were reconstructed to a voxel size of 0.125 mm without attenuation correction.

Statistical Analysis

Statistical analysis was performed using the Wilcoxon signed-rank test or 2-way ANOVA with GraphPad Prism (version 5.03; GraphPad Software). Each paw was analyzed as an independent event. Spearman correlation values between arthritis-to-blood values and arthritis score were calculated for Figure 1. Statistical significance was represented as P ≤ 0.05, P ≤ 0.01, and P ≤ 0.001.

RESULTS

Dosing Study of 111In-Anti-F4/80-A3-1

The optimal dose of 111In-anti-F4/80-A3-1 in mice was determined to be 10 µg; accumulation in most tissues remained largely unaltered compared with 40 µg of 111In-anti-F4/80-A3-1, yet the arthritis-to-blood ratio was increased (Supplemental Fig. 2). For instance, uptake of 10 or 40 µg of 111In-anti-F4/80-A3-1 in the blood equaled 1.4 ± 0.4 or 2.3 ± 0.6 %ID/g, respectively. Notably, splenic uptake was higher at 10 µg of 111In-anti-F4/80-A3-1 (103.9 ± 6.4 %ID/g) than at 40 µg of 111In-anti-F4/80-A3-1 (34.6 ± 4.4 %ID/g). The
Joint uptake of tracers in untreated or etanercept-treated CIA mice at 48 h (\(^{111}\text{In-28H1, 111\text{-DP47GS; A and B}}, \) \(^{111}\text{In-anti-F4/80, 111\text{-ratIgG2b; C and D}}, \) and 1 h after injection (\(^{111}\text{In-RGD2, with/without excess unlabeled; E and F}.\)) Data are average ± SD (n = 7–10 mice/group [A–D] or 2 mice/group [E and F], 4 joints per mouse [A, C, and E] or individual joints (n = 14–20 mice/group, 4 joints per mouse; B, D, and F). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. RA = rheumatoid arthritis.

FIGURE 1. Joint uptake of tracers in untreated or etanercept-treated CIA mice at 48 h (\(^{111}\text{In-28H1, 111\text{-DP47GS; A and B}}, \) \(^{111}\text{In-anti-F4/80, 111\text{-ratIgG2b; C and D}}, \) and 1 h after injection (\(^{111}\text{In-RGD2, with/without excess unlabeled; E and F}.\)) Data are average ± SD (n = 7–10 mice/group [A–D] or 2 mice/group [E and F], 4 joints per mouse [A, C, and E] or individual joints (n = 14–20 mice/group, 4 joints per mouse; B, D, and F). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. RA = rheumatoid arthritis.

Etanercept Therapy

Treatment with etanercept was successful because macroscopic scores of arthritis were lower in treated mice than in untreated mice (Supplemental Fig. 3). At day 6 after the start of therapy, average arthritis scores were 4.0 ± 1.7 in untreated mice and 1.8 ± 1.1 in treated mice, as measured on a scale of 0–8 per mouse (i.e., 0–2 per paw).

Biodistribution Studies

Biodistribution studies after dissection showed that uptake of \(^{111}\text{In-28H1 (Spearman r, 0.4069; P < 0.001), 111\text{-anti-F4/80-A3-1 (Spearman r, 0.7542; P < 0.0001), and 111\text{-RGD2 (Spearman r, 0.6527; P < 0.01)} increased in arthritic joints in mice treated with etanercept and that tracer uptake correlated with arthritis score (Fig. 1). For instance, joint uptake of \(^{111}\text{In-28H1 in treated and untreated mice averaged 11 ± 11 %ID/g (95% confidence interval [CI], 7.0–15.1) and 23 ± 15 %ID/g (95% CI, 17.6–29.1), respectively (P < 0.001). Joint uptake of 111\text{-anti-F4/80-A3-1 decreased from 8 ± 4 %ID/g (95% CI, 6.8–9.3) to 4 ± 4 %ID/g (95% CI, 2.5–4.9) after treatment (P < 0.001 for both tracers between treated and untreated) as did \(^{111}\text{In-RGD2 uptake (from 2 ± 1 %ID/g [95% CI, 1.5–2.8] to 1 ± 0.2 %ID/g [95% CI, 0.8–1.2]) (P = 0.0078). Uptake of all 3 tracers when normalized to blood (arthritis-to-blood values) was higher at each arthritis score (0.25–2) for \(^{111}\text{In-28H1, 111\text{-anti-F4/80-A3-1, and 111\text{-RGD2 than for control 111\text{-DP47GS, 111\text{-anti-ratIgG2b, and 111\text{-RGD2 plus unlabeled excess (Figs. 1B, 1D, and 1F). P} values at arthritis score 2 (per joint) were 0.002, comparing 111\text{-28H1 and 111\text{-anti-F4/80-A3-1 with their controls.}}

In untreated mice, blood levels for \(^{111}\text{In-DP47GS were higher, whereas femur uptake values were lower, than for 111\text{-28H1 (Supplemental Fig. 4A). Etanercept therapy resulted in lower blood values and higher liver values for 111\text{-28H1 and 111\text{-DP47GS than untreated mice (Supplemental Fig. 4A), most likely due to a mouse–antihuman IgG response. Whole-body biodistribution varied between 111\text{-anti-F4/80-A3-1 and its isotype-matched control 111\text{-ratIgG2b, with lower blood circulating levels and higher uptake in the spleen, liver, and femur than blood values for 111\text{-In-F4/80-A3-1 (Supplemental Fig. 4B). Etanercept treatment had no effect on general biodistribution of 111\text{-anti-F4/80-A3-1, 111\text{-ratIgG2b, 111\text{-RGD2, or 111\text{-RGD2 plus excess unlabeled (Supplemental Figs. 4B and 4C).}}

Table 1 shows a summary of the arthritis-to-blood values obtained in biodistribution studies.

Quantitative SPECT Analysis

Arthritic joints were specifically visualized with \(^{111}\text{In-28H1 (Fig. 2; Supplemental Fig. 5), 111\text{-anti-F4/80-A3-1 (Fig. 3; Supplemental Fig. 6), and 111\text{-RGD2 (Fig. 4; Supplemental Fig. 7). Quantitative SPECT analysis showed that tracer uptake within joints significantly decreased in treated animals compared with untreated controls (Figs. 2–4). For instance, joint uptake equaled 2.0 ± 0.6, 0.6 ± 0.2, and 0.2 ± 0.1 %ID in untreated animals for 111\text{-28H1, 111\text{-anti-F4/80-A3-1, and 111\text{-RGD2, respectively. These values were higher than in treated animals (0.7 ± 0.8, 0.3 ± 0.2, and 0.08 ± 0.02 %ID). Uptake of 111\text{-28H1 in arthritic, untreated joints was far higher (2.0 ± 0.6 %ID) than uptake of 111\text{-DP47GS (0.8 ± 0.4 %ID), and joint uptake of 111\text{-anti-ratIgG2b was not significantly decreased in untreated versus treated mice (0.7 ± 0.4 and 0.5 ± 0.4 %ID, respectively).}}

Values obtained for \(^{111}\text{In-28H1, 111\text{-anti-F4/80-A3-1, and 111\text{-RGD2 by quantitative SPECT analysis correlated well with macroscopic arthritis scores (Supplemental Fig. 8).}}

DISCUSSION

The data acquired in the dosing study were consistent with the idea of the spleen and liver acting as an antigen sink for \(^{111}\text{In-anti-F4/80-A3-1 due to the presence of a large number of macrophages (13). Because of its short circulation time, studies involving \(^{111}\text{In-anti-F4/80-A3-1 were completed at 24 h after injection.}}

Etanercept, the drug of choice in these studies, is a soluble fusion protein consisting of human p75 TNF-α receptor and the Fc portion of human IgG (19). It is a biologic DMARD that inhibits binding of inflammatory cytokine TNF-α to its receptor and is often given to arthritis patients if other treatments are contraindicated or withdrawn because of adverse events.

Here, we showed that the effect of etanercept on macroscopic/clinical arthritis score can not only be visualized noninvasively using imaging tracers that target either FAP, macrophages, or integrins, but also can be measured quantitatively in either ex vivo biodistribution studies or quantitative SPECT. In previous studies,

IMAGING EXPERIMENTAL ARTHRITIS • Terry et al. 469
the authors did not see accumulation of any of the tracers in the joints of nonarthritic mice (8,12,13,18). The 3 tracers are different with regard to their targets, mechanism, and pharmacokinetics; they all measure something different, so a straight comparison was not performed here.

The uptake of 111In-28H1, 111In-anti-F4/80-A3-1, and 111In-RGD2 is antigen/receptor-mediated because joint-to-blood values decreased for antibody controls or for 111In-RGD2 when competed with excess peptide (Fig. 1). For all tracers, including the RGD peptide, the enhanced permeability and retention effect did add to total tracer uptake because the nonspecific uptake of the tracer, displayed by enhanced permeability and retention effect did add to total tracer peptide (Fig. 1). For all tracers, including the RGD peptide, the enhanced liver uptake of 111In-28H1 after etanercept treatment (Supplemental Fig. 4A). In turn, this enhanced liver uptake might also explain the lower uptake in joints of treated mice.

Decreased antigen-mediated uptake of 111In-28H1 in arthritic joints of treated CIA mice could be explained by lowered targeted availability because etanercept has been shown to induce apoptosis in macrophages resident in the synovium of arthritis patients at 8 wk as well as in mononuclear cells from synovial fluid in vitro (25). Similar targeted-mediated responses are also thought to be responsible for changes in 111In-RGD2 uptake in arthritic joints after etanercept therapy by affected osteoclasts (26,27) and vasculature (28). The latter option is possible, because endothelial cells have previously been targeted for use in imaging of inflammation (29).

Quantitative SPECT values (%ID) and biodistribution data (%ID/g) were not directly comparable in these studies, because quantitative SPECT values were derived from the whole paw (toe/finger to above ankle/wrist) and biodistribution data were derived from the areas directly surrounding the ankle/wrist. Interestingly, total non–antigen-mediated uptake of 111In-ratIgG2b in the joint significantly decreased in treated compared with untreated CIA mice in biodistribution studies (Fig. 1C) yet not in the quantitative SPECT studies (Fig. 3C), likely because of a limited sensitivity of quantitative SPECT.

Because of the large variation in arthritis scores induced in the CIA mice and different responses to etanercept in individual mice, many animals had to be used per group. Despite this, the correlative figures show that these tracers can be used to objectively and quantitatively determine arthritis score in individual paws.

Table 1
Mean and 95% CIs of Arthritis-to-Blood Uptake Ratios from Figures 1B, 1D, and 1F

<table>
<thead>
<tr>
<th>Arthritis score</th>
<th>111In-28H1</th>
<th>111In-DP47GS (control)</th>
<th>111In-anti-F4/80-A3-1</th>
<th>111In-antiratIgG2b (control)</th>
<th>111In-RGD2</th>
<th>Cold excess RGD2 (control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50 (2.7–7.3)</td>
<td>0.3 (0.3–0.4)</td>
<td>1.8 (0.6–2.9)</td>
<td>0.2 (0.2–0.2)</td>
<td>3.5 (2.9–4.1)</td>
<td>2.0 (1.2–2.8)</td>
</tr>
<tr>
<td>0.25</td>
<td>48 (1.8–7.7)</td>
<td>0.5 (0.1–0.9)</td>
<td>1.7 (0.9–2.6)</td>
<td>0.2 (0.1–0.3)</td>
<td>3.9 (0.1–7.7)</td>
<td>2.0 (3.2–7.3)</td>
</tr>
<tr>
<td>0.75</td>
<td>8.9</td>
<td>5.8 (65.7–77.3)</td>
<td>1.6</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>1</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>3.4</td>
</tr>
<tr>
<td>1.25</td>
<td>11.8 (2.9–26.6)</td>
<td>0.3 (0.2–0.5)</td>
<td>7.1 (3.2–11.1)</td>
<td>0.4 (0.1–0.8)</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>1.5</td>
<td>8.3 (1.9–14.7)</td>
<td>2.2 (1.7–6.0)</td>
<td>6.4 (5.3–7.5)</td>
<td>0.5 (0.4–0.7)</td>
<td>8.2</td>
<td>3.8 (1.8–5.8)</td>
</tr>
<tr>
<td>1.75</td>
<td>8.4 (5.5–11.2)</td>
<td>0.6 (0.5–0.8)</td>
<td>7.6 (6.4–8.9)</td>
<td>0.5 (0.4–0.5)</td>
<td>8.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>5.5 (4.7–6.4)</td>
<td>0.7 (0.3–1.2)</td>
<td>10.4 (7.9–13.0)</td>
<td>0.5 (0.4–0.6)</td>
<td>7.2 (5.9–20.3)</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Where no CIs are shown, data are from n = 1. All values over 25 were excluded. Data in parentheses are 95% CIs.

Figure 2
Three-dimensional SPECT/CT scans of etanercept-treated CIA mice 48 h after injection of 111In-28H1 (A) and 111In-DP47GS (B). All images are scaled equally. (C) Quantitative analysis of SPECT images. Data are average ± SD (n = 3 mice/group, 4 joints/mouse). *P < 0.01.
Put et al. provide a review on general tracers and radiolabeled biologicals used to image inflammatory processes (30). Previous studies have focused mostly on targeting macrophages—either with radiolabeled folate (31–33), with (R)-11C-PK11195 or translocator protein TSPO (34–36) (which has also been used clinically), or with radiolabeled nanobodies (37)—or by targeting CD163 receptors (38) or mannose receptors (39). Unfortunately, images acquired using radiolabeled folate led to poor-quality images (31), most probably due to general low uptake of the tracers in the joints (32), a feature also seen with the anti-CRIg Nanobody 99mTc-NbV4m119 (37). So far, the only tool to image F4/80 receptors specifically has been near-infrared-labeled antibodies (40), making our radiolabeled anti-F4/80-A3-1 antibody a unique nuclear tool.

Other, more generalized ways of imaging arthritis include 3'-deoxy-3'-18F-fluorothymidine (41), which showed high background levels due to uptake in bone marrow, and 18F-FDG. Despite the fact that 18F-FDG was suggested as a good tool to develop the therapeutic effect of novel therapies of inflammatory arthritis in the study by Kundu-Raychaudhuri et al. (42), in a preclinical model Laverman et al. showed that 18F-FDG was inferior to other nuclear imaging tracers when correlating uptake of 18F-FDG with arthritis score (δ).

Monitoring response to therapy in arthritis is usually performed by clinical macroscopic scoring, ultrasonography, conventional radiography, or MRI. This highlights not only the originality of the studies performed here, by targeting integrins, macrophages, or FAP in preclinical models of arthritis, but also the novelty of assessing these tracers as tools to monitor therapy response. Radionuclide-imaging-targeting-specific molecular mechanisms could therefore be a great tool alongside the standard techniques, although cost–benefit analysis will need to be performed to determine whether any potential risk from radiation dose outweighs the benefits of early and quick therapy response monitoring.

CONCLUSION

111In-28H1, 111In-anti-F4/80-A3-1, and 111In-RGD2 can be used to specifically monitor therapy response in experimental arthritis at the molecular level. Further studies, however, still need to be performed not only to confirm that altered target expression is the cause of the diminished uptake of all 3 tracers, but also to determine whether these tracers could be used for early diagnosis of arthritis as well as whether they can be used to monitor response to other types of therapies.

DISCLOSURE

The costs of publication of this article were defrayed in part by the payment of page charges. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734. A portion of this study was funded by the Roche Postdoc Fellowship (RPF) Program. Tapan K. Nayak, Anne Freimoser-Grundschober, and Christian Klein are all employed by Roche, who provided the 28H1 and DP47GS antibodies. No other potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

We thank Tessa van der Geest, Danny Gerrits, and Janneke Molkenboer-Kuenen for help with the biodistribution studies.

REFERENCES

Monitoring Therapy Response of Experimental Arthritis with Radiolabeled Tracers Targeting Fibroblasts, Macrophages, or Integrin $\alpha_v\beta_3$

Samantha Y.A. Terry, Marije I. Koenders, Gerben M. Franssen, Tapan K. Nayak, Anne Freimoser-Grundschober, Christian Klein, Wim J. Oyen, Otto C. Boerman and Peter Laverman

Published online: December 3, 2015.
Doi: 10.2967/jnumed.115.162628

This article and updated information are available at:
http://jnm.snmjournals.org/content/57/3/467

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to *JNM* can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

The Journal of Nuclear Medicine is published monthly.
SNMMI | Society of Nuclear Medicine and Molecular Imaging
1850 Samuel Morse Drive, Reston, VA 20190.
(Print ISSN: 0161-5505, Online ISSN: 2159-662X)