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Classification of subjects on the basis of amyloid PET scans is

increasingly being used in research studies and clinical practice.

Although qualitative, visual assessment is currently the gold
standard approach, automated classification techniques are in-

herently more reproducible and efficient. The objective of this work

was to develop a statistical approach for the automated classifica-

tion of subjects with different levels of cognitive impairment into
a group with low amyloid levels (AβL) and a group with high amyloid

levels (AβH) through the use of amyloid PET data from the Alzheimer

Disease Neuroimaging Initiative study. Methods: In our framework,

an iterative, voxelwise, regularized discriminant analysis is com-
bined with a receiver operating characteristic approach that opti-

mizes the selection of a region of interest (ROI) and a cutoff value for

the automated classification of subjects into the AβL and AβH

groups. The robustness, spatial stability, and generalization of the
resulting target ROIs were evaluated by use of the standardized

uptake value ratio for 18F-florbetapir PET images from subjects

who served as healthy controls, subjects who had mild cognitive
impairment, and subjects who had Alzheimer disease and were

participating in the Alzheimer Disease Neuroimaging Initiative study.

Results: We determined that several iterations of the discriminant

analysis improved the classification of subjects into the AβL and
AβH groups. We found that an ROI consisting of the posterior cin-

gulate cortex/precuneus and the medial frontal cortex yielded opti-

mal group separation and showed good stability across different

reference regions and cognitive cohorts. A key step in this process
was the automated determination of the cutoff value for group sep-

aration, which was dependent on the reference region used for the

standardized uptake value ratio calculation and which was shown to
have a relatively narrow range across subject groups. Conclusion:
We developed a data-driven approach for the determination of an

optimal target ROI and an associated cutoff value for the separation

of subjects into the AβL and AβH groups. Future work should include
the application of this process to other datasets to facilitate the

determination of the translatability of the optimal ROI obtained in

this study to other populations. Ideally, the accuracy of our target

ROI and cutoff value could be further validated with PET-autopsy
data from large-scale studies. It is anticipated that this approach will

be extremely useful for the enrichment of study populations in clin-

ical trials involving putative disease-modifying therapeutic agents
for Alzheimer disease.
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The advent of PET radiotracers with high specificity for
b-amyloid plaques represents a paradigm shift in Alzheimer dis-
ease (AD) research. The use of amyloid PET has markedly im-
proved the understanding of the relationship between b-amyloid
pathology and cognition (1–3), brain structure (4,5), cerebral glu-
cose metabolism (6–8), and brain connectivity (9–11). In addition,
amyloid PET is increasingly being used for the enrichment of
study populations with “amyloid-positive” subjects in clinical tri-
als of putative agents for reducing amyloid levels (12–14). Finally,
the approval of several 18F-labeled tracers by regulatory authori-
ties has facilitated the use of amyloid PET as part of the clinical
diagnostic work-up for patients with cognitive impairment.
In conventional amyloid PET studies, the standardized uptake

value ratio (SUVR) is used to assess a subject’s amyloid status.
The cerebellum has been widely used as the reference region
for amyloid PET studies. Clark et al. (15) found that the whole
cerebellum provided the strongest correlation between in vivo
18F-florbetapir SUVR and postmortem, quantitative immunohisto-
chemistry measures. However, the cerebellum may not satisfy the
conditions for a reference region in certain cases, including famil-
ial forms of AD and cerebral amyloid angiopathy, in which cere-
bellar amyloid is present; other reference regions (e.g., pons, centrum
semiovale, and cerebral white matter) are preferred in such cases
(16–19).
In addition to selection of the most suitable reference region for

the analysis of amyloid PET data, determination of the appropriate
target region (i.e., the numerator in an SUVR-based analysis) and
corresponding cutoff value for the SUVR are also matters of
current debate. The choice of a suitable target region of interest
(ROI) is crucial for quantitative analysis of PET imaging data.
Several amyloid PET target ROIs, varying from the whole cortex
(20) to more specific cortical regions (e.g., frontal, superior pari-
etal, lateral temporal, lateral occipital, medial temporal, anterior
cingulate, and posterior cingulate cortex), have been proposed
(21–25). Although these target regions have largely been selected
on the basis of high levels of tracer binding, they are not neces-
sarily optimal for the classification of subjects into a group with
low amyloid levels (AbL) and a group with high amyloid levels
(AbH) (we prefer this terminology over “amyloid-negative” and
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“amyloid-positive” because the latter terms depend on neuropath-
ologic confirmation). Further, the classification of subjects into
the AbL and AbH groups depends on the specification of an
SUVR cutoff value that separates subjects into 2 populations
according to the amount of tracer binding in the predefined target
ROI. A common approach has been determination of the optimal
cutoff value from a control population (e.g., cognitively normal
subjects) (7,25–27). The main drawback of this approach is that
the cutoff value is typically dependent on the SUVR distribution
in the control group.
The objective of this work was to use a data-driven approach to

determine the target region and associated SUVR threshold for
achieving maximal separation between AbL and AbH groups. To
assess the robustness and generalization of the resulting target
region, we performed extensive testing using different subject
populations and different reference regions.

MATERIALS AND METHODS

Subjects and Image Acquisition

Data used in the preparation of this article were obtained from the

Alzheimer Disease Neuroimaging Initiative (ADNI) database (http://
adni.loni.usc.edu). The ADNI was launched in 2003 by the National

Institute on Aging, the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, private pharma-

ceutical companies, and nonprofit organizations as a $60 million, 5-y
public–private partnership. The primary goal of the ADNI has been to

test whether serial MR imaging, PET, other biologic markers, and
clinical and neuropsychological assessments can be combined to mea-

sure the progression of mild cognitive impairment (MCI) and AD. The
determination of sensitive and specific markers of early AD progres-

sion is intended to aid researchers and clinicians in developing new
treatments and monitoring their effectiveness as well as to lessen the

time and cost of clinical trials.
ADNI is the result of efforts of many coinvestigators from

a broad range of academic institutions and private corporations,

and subjects have been recruited from more than 50 sites across
the United States and Canada. The initial goal of ADNI was to

recruit 800 subjects, but ADNI has been followed by ADNI-GO
and ADNI-2. To date, these 3 protocols have recruited over 1,500

adults, ages 55–90, to participate in the research, consisting of

cognitively normal older individuals, people with early or late MCI,
and people with early AD. The follow-up duration of each group is

specified in the protocols for ADNI-1, ADNI-2, and ADNI-GO.
Subjects originally recruited for ADNI-1 and ADNI-GO had the

option to be followed in ADNI-2. For up-to-date information, see
www.adni-info.org.

The subjects in the present study were participants in the ADNI
study and for whom 18F-florbetapir PET, 3-dimensional T1-weighted

anatomic MR imaging, and apolipoprotein E (APOE) e4 genotyping
data were available (155 healthy control [HC] subjects, 151 subjects

with early MCI [EMCI], 125 subjects with late MCI [LMCI], and
23 subjects with AD). Cognitively normal subjects had Mini-Mental

State Examination (MMSE) scores between 24 and 30 inclusively;
had a Clinical Dementia Rating of 0; and did not have depression,

MCI, or dementia. Subjects classified as having EMCI had MMSE
scores between 24 and 30 inclusively, a Clinical Dementia Rating of

0.5, a reported subjective memory concern, an absence of dementia,
an objective memory loss measured by education-adjusted scores on

delayed recall of a paragraph from the Wechsler Memory Scale Log-

ical Memory II, essentially preserved activities of daily living, and no
impairment in other cognitive domains. Subjects classified as having

LMCI had the same inclusion criteria, except for the objective mem-
ory loss measured by education-adjusted scores on delayed recall of

a paragraph from the Wechsler Memory Scale Logical Memory II.
Subjects classified as having AD had MMSE scores ranging from

20 to 26 inclusively, had a Clinical Dementia Rating of 0.5 or higher,
and met the criteria of the National Institute of Neurological and

Communicative Disorders and Stroke and the Alzheimer’s Disease
and Related Disorders Association for probable AD.

Subject characteristics are shown in Table 1. We grouped the
subjects into 2 cohorts to examine the stability of the proposed

optimal target ROI across subjects with different levels of cognitive
impairment. Cohort 1 included subjects with EMCI and LMCI, and

cohort 2 consisted of HC subjects and subjects with AD. A detailed
description of the ADNI MR imaging and PET image acquisition

protocols is available at http://adni.loni.usc.edu/methods. ADNI
studies are conducted in accordance with Good Clinical Practice

guidelines, the Declaration of Helsinki, and U.S. 21 CFR §50 (Pro-
tection of Human Subjects) and §56 (Institutional Review Boards).

This study was approved by the institutional review boards of all

TABLE 1
Subject Characteristics

Cohort 1 Cohort 2

Characteristic EMCI LMCI HC AD

Sample size (no. of subjects) 151 125 155 23

SUVRWC 1.21 ± 0.17 1.28 ± 0.18 1.17 ± 0.15 1.36 ± 0.20

Age (y) 71.28 ± 7.71 74.71 ± 7.89 76.74 ± 6.26 74.61 ± 10.95

Sex (no. of women/no. of men) 66/85 53/72 81/74 9/14

APOE ε4 (no. of carriers/no. of noncarriers) 65/86 67/58 43/112 16/7

MMSE score 28.45 ± 1.49 26.01 ± 4.19 28.93 ± 1.31 22.78 ± 2.08

ADAS-Cog score 12.40 ± 5.24 21.52 ± 10.96 9.49 ± 4.58 30.82 ± 8.67

Sample size for CSF study (no. of subjects) 136 88 111 21

CSF-Aβ1–42 (pg/mL) 183.21 ± 49.94 154.90 ± 46.02 189.62 ± 52.38 146.72 ± 52.03

ADAS-Cog 5 Alzheimer Disease Assessment Scale–Cognitive Subscale.
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participating institutions. Informed written consent was obtained
from all participants at each site.

Image Processing

All MR and PET images were processed with the PIANO

software package (Biospective Inc.). T1-weighted MR imaging
volumes underwent image nonuniformity correction with the N3

algorithm (28), brain masking, linear spatial normalization with a 9-
parameter affine transformation, and nonlinear spatial normalization

(29) to map individual images from native coordinate space to Mon-
treal Neurological Institute reference space through the use of a cus-

tomized, anatomic MR imaging template derived from subjects in
the ADNI study. The resulting image volumes were segmented into

gray matter, white matter, and cerebrospinal fluid (CSF) with an
artificial neural network classifier (30) and partial-volume estimation

(31). The gray matter density map for each subject was transformed

to the same final spatial resolution (i.e., resampled to the same voxel
size and spatially smoothed) as the 18F-FDG PET data to account for

confounding effects of atrophy in the statistical model. The cere-
bral midcortical surface (i.e., the midpoint between the pia and the

white matter) for each hemisphere was extracted to allow for sur-
face projection of PET data with a modified version of the CLASP

algorithm (32).
The 18F-florbetapir PET images underwent several preprocessing

steps, including frame-to-frame linear motion correction, smoothing
with scanner-specific blurring kernels, and averaging of dynamic

frames into a static image. The scanner-specific blurring kernels that
were used to obtain isotropic spatial smoothing of 8 mm full width at

half maximum across all PET data were based on the work of Joshi
et al. (33) to reduce the between-scanner differences in the ADNI

multicenter study. The resulting smoothed PET volumes were linearly
registered to the subject’s T1-weighted MR imaging volumes and,

subsequently, spatially normalized to reference space by use of the
nonlinear transformations derived from the anatomic MR imaging

registration. Voxelwise SUVR maps were generated from 18F-florbetapir

PET by use of several reference regions, including full cerebellum,
cerebellar gray matter, cerebellar white matter, pons, and cerebral

white matter. The cortical SUVR measures were projected onto the
cortical surface, and the data from each subject were mapped to

a customized surface template by nonrigid 2-dimensional surface
registration for visualization purposes (34).

Subject Characteristic Analysis

A statistical analysis of the characteristics of subjects within each

cohort was performed. The clinical classification (HC, EMCI, LMCI,
and AD) and the APOE e4 genotype (noncarrier and carrier) were

treated as independent, binary categorical variables. Cognitive per-
formance measures, including the MMSE score and the Alzheimer

Disease Assessment Scale–Cognitive Subscale score, as well as CSF
Ab1–42 levels, were treated as continuous variables. Associations among

categoric variables (e.g., sex, clinical classification, and APOE e4
genotype) were determined by use of contingency tables, whereas an

ANOVA was used for continuous variables (e.g., age, 18F-florbetapir
SUVR across the whole cerebral cortex [SUVRWC], MMSE, Alzheimer

Disease Assessment Scale–Cognitive Subscale, and CSF Ab1–42).
The statistical significance for all tests was set at an a level of 0.05.

All values are reported as mean 6 SD.

Optimal Target ROI Definition

The mean 18F-florbetapir SUVRWC was calculated for each subject.
An initial regularized discriminant analysis (RDA) (35) was per-

formed to determine the optimal threshold for separating subjects into
2 distinct classes on the basis of individual SUVRWC measurements.

The RDA assumes an underlying Gaussian distribution and defines
discriminative functions on the basis of the sample means and co-

variance matrices. The RDA includes a regularization parameter that
controls the degree of contraction of each individual class covariance

matrix estimate (quadratic discriminant analysis) toward the pooled
(over all classes) covariance matrix (linear discriminant analysis). As

a result, the RDA is a general discriminant analysis technique that
includes the linear discriminant analysis and the quadratic discrimi-

nant analysis as particular cases. Individual 18F-florbetapir SUVRWC

measurements were ranked, and cutoff values that separated the mea-

surements into 2 different classes were defined. The RDA defined the

contraction parameter that yielded the maximal accuracy at each cut-
off value. The optimal cutoff value was then determined through a re-

ceiver operating characteristic (ROC) analysis. On the basis of this
cutoff value for the SUVRWC, subjects were designated as being in the

AbL group or the AbH group.

FIGURE 1. Flow diagram of automated, iterative process for classifi-

cation of subjects according to β-amyloid level.
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This preliminary classification of subjects served to initialize an

automated, iterative, voxelwise RDA to optimize the selection of a set
of ROIs and a cutoff value for the automated reclassification of

subjects into the AbL and AbH groups; a flow diagram is shown in
Figure 1. Specifically, at the first iteration, an RDA was performed at

every cortical voxel to produce maps of accuracy, specificity, and
sensitivity (relative to the subject’s current classification in the AbL

group or the AbH group). Thresholds were applied to these maps by
use of a nonparametric permutation approach for the control of mul-

tiple comparisons (36). The conjunction (i.e., intersection) of the
resulting thresholded maps served to define a single, composite ROI

that maximized accuracy, specificity, and sensitivity. The average 18F-
florbetapir SUVR was then computed over this composite ROI

(SUVRROI) for each subject. Another round of RDA was performed
on the basis of the SUVRROI data, rather than the voxelwise values,

and an optimal cutoff value for the SUVRROI was determined through

an ROC analysis. On the basis of this new cutoff value, the subjects
were reclassified into the AbL and AbH groups. With this approach,

the subjects were reclassified as being in the AbL group or the AbH

group on the basis of an RDA analysis from a data-driven, composite

ROI and an associated optimal cutoff value. The entire process was
repeated until the subject classifications remained stable.

RESULTS

Subject Characteristics

The analysis of the characteristics of cohort 1 subjects revealed
no statistically significant association between clinical classification
(EMCI vs. LMCI) and APOE e4 genotype (P 5 0.08). Similarly,
there was no significant association between sex and clinical clas-
sification (P5 0.82). In contrast, there was a statistically significant
age difference between subjects with EMCI and subjects with
LMCI (P 5 0.0017). There was also a statistically significant dif-
ference in the initial SUVRWC measurements (with the full cerebel-
lum as a reference region) (P5 0.002) between subjects with EMCI

(1.21 6 0.17) and subjects with LMCI (1.28 6 0.18). Statistical
analysis of the cognitive measures and CSF biomarkers shown in
Table 1 revealed strong, statistically significant differences (P ,
0.0001) between subjects with EMCI and subjects with LMCI.
The analysis of the data from cohort 2 subjects revealed

a statistically significant association (P , 0.0001) between clini-
cal classification (HC vs. AD) and APOE e4 genotype but no
significant association (P 5 0.24) with sex. As in cohort 1, the
initial SUVRWC measurements were significantly higher (P ,
0.001) in the AD group (1.36 6 0.20) than in the HC group
(1.17 6 0.15). There were strong, statistically significant differ-
ences in the cognitive performance measures and CSF Ab1–42

(P , 0.0001) between the HC group and the AD group.

Optimal Target ROI

The initial RDA and ROC analysis of the SUVRWC (with the
full cerebellum as a reference region) for cohort 1 yielded a cutoff
value of 1.20. The top row in Figure 2 shows the distribution and
estimated probability density function of the SUVRWC. This ana-
lysis separated cohort 1 into 2 groups, consisting of 131 subjects in
the AbL group, with an SUVRWC of less than or equal to 1.20, and
145 subjects in the AbH group, with an SUVRWC of greater than
1.20. This preliminary classification was used to initialize the
voxelwise RDA that generated the accuracy, specificity, and sen-
sitivity maps shown in Figure 3. Permutation testing with a multiple-
comparison correction approach yielded respective thresholds of
0.80, 0.86, and 0.83, which revealed that the bilateral precuneus
and medial frontal cortex regions had statistically significant, high
values for accuracy, specificity, and sensitivity. The conjunction
(i.e., intersection) of the thresholded maps produced a composite
target ROI (top row in Fig. 4) corresponding to the first iteration
of our automated classification process. The ROC analysis over
the SUVRROI corresponding to this composite target region yielded
a cutoff value for the SUVRROI of 1.27.
Three additional iterations were performed to obtain the

definitive composite target ROI (bottom row in Fig. 4) that max-
imized the separation of cohort 1 subjects into the AbL and AbH

groups. The resulting distribution and estimated probability den-
sity function of the optimal target SUVRROI are also shown in
Figure 2. The sample size distribution of the 2 groups and the
optimal cutoff values obtained in each iteration are shown in
Table 2. To illustrate the dynamic allocation of subjects into the 2

FIGURE 2. (Top) Distribution and estimated probability density func-

tion (PDF) of whole-cortex SUVRWC. RDA combined with ROC analysis

initially separated cohort 1 into 2 groups, consisting of 131 AβL and 145

AβH subjects. (Bottom) Distribution and estimated probability density

function of target ROI SUVR obtained during 4 iterations of automated

discrimination process. All5mean for all subjects; AβL and AβH 5 initial

classification; New-AβL and New-AβH 5 definitive classification based

on optimal target SUVRROI.

FIGURE 3. Cortical surface representation of non-thresholded maps of

accuracy, specificity, and sensitivity after 1 iteration of voxelwise RDA.
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groups during the iterative process, Table 2 also shows the ac-
curacy, specificity, and sensitivity of the resulting classification
with respect to the initial labeling, on the basis of the SUVRWC,
and with respect to the preceding iteration. During the first iter-
ation, 149 subjects were allocated into the AbH group, including
97.2% (i.e., sensitivity of 0.972) of the 145 AbH group subjects
from the initial classification. By the fourth iteration, only 141
subjects were allocated into the AbH group, including 93.8% of
the original 145 subjects in that particular group. Interestingly,
none of the 128 subjects initially classified into the AbL group
changed groups through subsequent iterations. The definitive
classification of 135 subjects into the AbL group and 141 sub-
jects into the AbH group on the basis of a cutoff value of 1.24
produced accuracy, specificity, and sensitivity values of 0.985,
0.970, and 1.000, respectively.
Given the lack of an autopsy gold standard, we correlated the

SUVRROI in the optimal composite target ROI with the CSFAb1–42

in the subset of subjects for whom this measure was available. The
SUVRROI in the optimal composite target ROI was strongly cor-
related (P , 0.0001) with the CSF Ab1–42 across subjects
in cohort 1 (Spearman correlation coefficient [r], 20.7361). The

average CSF Ab1–42 was significantly smaller (P , 0.0001) in the
AbH group (133.54 6 23.19) than in the AbL group (207.98 6
41.32) (Table 3).
Analogous to Figure 4, Supplemental Figure 1 (supplemental

materials are available at http://jnm.snmjournals.org) shows the
composite ROI for the optimal separation of cohort 1 subjects
who had MCI into the AbL and AbH groups with cerebellar gray
matter, cerebellar white matter, pons, and cerebral white matter as
reference regions. The bilateral precuneus and medial frontal cor-
tex defined a composite target ROI that remained stable across the
5 different reference regions used in the present study (Fig. 4 and
Supplemental Fig. 1).
Figure 5 shows the composite target ROI resulting from the

application of the iterative classification process to cohort 2
with the full cerebellum as a reference region. The optimal
composite target ROI included the bilateral precuneus, medial
frontal cortex, and regions in the temporal-parietal cortex. In
this case, only 3 iterations were required to segregate this pop-
ulation into 108 subjects in the AbL group and 70 subjects in
the AbH group, with a cutoff value of 1.29 and with accuracy,
specificity, and sensitivity values of 0.983, 0.981, and 0.985,
respectively.
Similar to cohort 1 subjects, the SUVRROI for cohort 2 subjects

showed a statistically significant (P, 0.0001) correlation with the
CSF Ab1–42 (r, 20.7507). The average CSF Ab1–42 was signifi-
cantly smaller (P , 0.0001) in the AbH group (140.01 6 37.05)
than in the AbL group (215.31 6 41.58) (Table 3).

Comparison with Anatomic Target ROI

The performance of our data-driven composite target ROI and
associated, automated cutoff was compared with subject classifi-
cation on the basis of the 18F-florbetapir SUVR (with the full
cerebellum as a reference region) obtained from an anatomically
predefined composite ROI. Specifically, this ROI included ana-
tomically defined regions of the precuneus, posterior cingulate,
and medial frontal cortex (cutoff value, 1.10); this ROI has been
one of the most commonly used target ROIs for discriminating
subjects with low and high levels of b-amyloid (15,25,37). The
cutoff value of 1.10 for the SUVR obtained from the anatomically

FIGURE 4. Target ROIs resulting from initial and final iterations of

voxelwise RDA for cohort 1. Final, optimal target ROI included bilateral

regions of precuneus and medial frontal cortex. Cutoff value of 1.24 for

average optimal target ROI separated cohort 1 into 2 groups, consisting

of 135 AβL and 141 AβH subjects.

TABLE 2
Sample Size Distribution, Optimal Cutoff Values, and Discrimination Parameters Obtained During Application of Automatic

Iterative Process to Cohort 1

Parameter Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4

Cutoff value 1.20 1.27 1.26 1.25 1.24

NH 145 149 142 141 141

NL 131 127 134 135 135

Acc-WC 0.985 0.960 0.949 0.945 0.949

Spec-WC 0.992 0.946 0.962 0.962 0.962

Sens-WC 0.979 0.972 0.937 0.931 0.938

Acc-Iter 0.960 0.975 0.996 1.000

Spec-Iter 0.946 1.000 1.000 1.000

Sens-Iter 0.972 0.953 0.992 1.000

At each iteration, accuracy, specificity, and sensitivity were calculated with respect to initial classification at iteration 0 (Acc-WC, Spec-
WC, and Sens-WC) and with respect to preceding iteration (Acc-Iter, Spec-Iter, and Sens-Iter). NH 5 number of subjects in AβH group;

NL 5 number of subjects in AβL group.
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predefined composite ROI split cohort 1 into an AbL group with
111 subjects and an AbH group with 165 subjects. A discriminant
analysis based on this classification demonstrated an accuracy of
0.942, a specificity of 0.981, and a sensitivity of 0.915; these
values indicate a clear decrease in discriminative power relative
to the accuracy of 0.985 achieved with our data-driven composite
target ROI and cutoff of 1.24. A contingency table analysis of both
classifications showed an agreement of 91.3%, explained by the
identical classifications of 111 subjects into the AbL group and
141 subjects into the AbH group. Similarly, the cutoff value of
1.10 for the SUVR obtained from the anatomically predefined
composite ROI split cohort 2 into an AbL group with 100 subjects
and an AbH group with 78 subjects, with accuracy, specificity, and
sensitivity values of 0.966, 0.970, and 0.961, respectively. This
classification showed a 94.3% agreement with our automated,
data-driven classification.

Stable Target ROIs

The intersection of the composite ROIs corresponding to the 5
different reference regions produced an optimal, stable composite
ROI for cohort 1; this stable target ROI is shown in the top row of
Figure 6. The high discriminative power (average accuracy, 0.987)
of this ROI for cohort 1 (Supplemental Table 1) confirmed that this
target ROI was indeed stable across the 5 different reference
regions. Optimal composite ROIs were generated for cohort 2
(as for cohort 1) with cerebellar gray matter, cerebellar white
matter, pons, and cerebral white matter as reference regions (Sup-
plemental Fig. 2). Correspondingly, the intersection of the com-
posite ROIs for these 5 reference regions produced a stable target
ROI for cohort 2; this stable target ROI is shown in the middle row
of Figure 6. The discriminative parameters and corresponding
cutoff values of this ROI for cohort 2 are also shown in Supple-
mental Table 1.
To determine whether a “generalized” target ROI could be

applied to both cohort 1 and cohort 2 with good performance
characteristics, we intersected the target ROIs corresponding to
the 2 cohorts; the resulting composite ROI is shown in the bottom
row of Figure 6. The data in Supplemental Table 1 demonstrate
that the composite ROI yielded results similar to those achieved
with the ROIs from the individual cohorts. This finding suggests
that the medial frontal cortex and the posterior cingulate or pre-
cuneus primarily drive the classification and that the lateral cor-
tical regions in the stable target ROI for cohort 2 do not have
a substantial influence on the group separation.

DISCUSSION

In this work, we introduced a new statistical framework for
determining an optimal target region that best segregates subjects
according to their level of 18F-florbetapir amyloid PET tracer bind-
ing. This approach involves the iterative generation of voxelwise
maps of accuracy, specificity, and sensitivity, which are combined
with a multiple-comparison criterion approach to produce the de-
sired optimal target region. A subsequent ROC analysis over the
target region SUVR measure yields the corresponding optimal
cutoff value. The performance of this approach was evaluated
with 2 different cohorts of subjects from the ADNI study, as well
as SUVR measures computed from multiple different reference
regions.
Our approach produced a generalized composite target ROI

(“Combined” in Fig. 6) that included regions of the posterior
cingulate cortex/precuneus and the medial frontal cortex and that
showed good stability across the 2 different cohorts and the 5
different reference regions. Our results are in agreement with
those reported by Camus et al. (20), who showed that the SUVRs
in the posterior cingulate cortex, precuneus, and medial frontal
cortex were statistically significantly higher in patients with AD
than in subjects with MCI and HC subjects. Correspondingly, the
SUVRs associated with the areas comprising our optimal target
ROI have been reported to be highly correlated with the b-amyloid
burden as measured by both immunohistochemistry and neuritic
plaque density (15).

TABLE 3
Clinical Outcomes and CSF Biomarkers in AβL and AβH Groups

Cohort 1 Cohort 2

Parameter AβL AβH AβL AβH

Sample size (no. of subjects) 135 141 108 70

SUVRROI 1.03 ± 0.08 1.58 ± 0.18 1.14 ± 0.06 1.58 ± 0.17

MMSE score 28.19 ± 2.48 26.53 ± 3.68 28.90 ± 1.49 26.95 ± 3.23

ADAS-Cog score 12.81 ± 6.65 20.01 ± 10.37 9.32 ± 4.86 16.77 ± 11.49

Sample size for CSF study (no. of subjects) 116 108 75 57

CSF-Aβ1–42 (pg/mL) 207.98 ± 41.32 133.54 ± 23.19 215.31 ± 41.58 140.01 ± 37.05

ADAS-Cog 5 Alzheimer Disease Assessment Scale–Cognitive Subscale.

FIGURE 5. Target ROIs resulting from initial and final iterations of

voxelwise RDA for cohort 2. Final, optimal target ROI included bilateral

regions of precuneus, medial frontal cortex, and temporal–parietal

cortex.
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The initial step in our iterative process was to apply an RDA to
individual SUVRWC measurements. The global cortex 18F-florbetapir
SUVR was used by Camus et al. (20) to differentiate patients
with MCI or mild AD from HC subjects, reaching a sensitivity of
0.932 and a specificity of 0.905 relative to pre-established visual
assessments of PET scans. Similarly, whole-brain neocortical
SUVR measurements of 18F-florbetaben were used to differentiate
patients with AD from HC subjects, with a sensitivity of 0.97 and
a specificity of 0.84 (24). In the present work, we demonstrated
that the accuracy, sensitivity, and specificity achieved with initial
global cortex SUVR measurements could be improved by iterat-
ing the discriminative process and refining the optimal target
ROI. As part of our work, we have found that the global cortical
SUVR can be replaced by other measures (e.g., visual assess-
ment) for the initial classification and the method will still pro-
duce similar results.
A key step in our statistical framework was determining the

cutoff value for the classification of subjects on the basis of the
optimal target ROI SUVR measurements. Typically, cutoff values
are selected on the basis of a comparison of the SUVR distribution
of a “cognitively normal” population with that of a population
having the abnormality under study (4,20,25,27,37,38). The main
drawback of this approach is that there is no guarantee that cog-
nitively normal subjects will be free of b-amyloid accumulation,
which can be confirmed only through visual assessment by an
experienced rater or through postmortem neuropathology. A cutoff
value of 1.10 has been proposed on the basis of a 24-mo autopsy
study, in which all subjects without b-amyloid plaques were con-
firmed (by silver stain plaque density scores) to have SUVRs of
less than 1.10 (37). The same cutoff value was used to differentiate
between scans obtained from a population of cognitively normal
young participants and showing normal results and scans showing
abnormal results as visually assessed by experienced raters (25).
Similarly, a cutoff value of 1.12 was used in a routine clinical
environment to differentiate patients with MCI or mild AD from
HC subjects (20). A recent meta-analysis showed that for the
SUVR separating “b-amyloid–positive” and “b-amyloid–
negative” subjects, the cutoff values varied from 1.1 to 1.6, with
a mean of approximately 1.3 (39). However, the results of the present

study showed that the cutoff value for the SUVR depends not
only on the distribution of the SUVR measurements across the
populations, but also on the selected reference region. In most studies
included in the aforementioned meta-analysis (39), the full cere-
bellum was used as a reference region. To the best of our knowl-
edge, the present study is the first to determine an optimal target
ROI and a corresponding cutoff value for the SUVR derived from
an exploration of several reference regions. A distinctive aspect of
our approach is that we used an ROC analysis for an automated,
unbiased determination of the optimal cutoff value and allowed
for the reclassification of subjects during the iterative process to
achieve maximal group separation.

CONCLUSION

We have developed a data-driven approach to determine an
optimal target ROI and an associated cutoff value for the
separation of subjects into AbL and AbH groups. The accurate
classification of subjects into AbL and AbH groups is vital to
understanding the relationship between the b-amyloid burden
and various other measures, including cognitive performance,
cerebral blood flow, glucose metabolism, brain atrophy, and brain
connectivity. Further, the relationship between the presence of b
amyloid in “cognitively normal” subjects and the future develop-
ment of cognitive impairment and dementia is actively being in-
vestigated as part of long-term, longitudinal, natural history studies.
Future work should include the application of this process to other
datasets to allow determination of the translatability of the optimal
ROI obtained in the present study to other populations. Although
a strong correlation between our classification and CSF Ab1–42

was shown, validating the accuracy of our target ROI and cutoff
value against PET-autopsy data from large-scale studies would, of
course, be ideal. Ultimately, it is anticipated that this approach will
be exceptionally useful for the enrichment of study populations in
natural history research studies and in clinical trials involving
putative disease-modifying therapeutic agents for AD.
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