Correlation of \textit{BRAF}^{V600E} Mutation and Glucose Metabolism in Thyroid Cancer Patients: An \textit{18}F-\textit{FDG} PET Study

James Nagarajah1,2, Alan L. Ho3, R. Michael Tuttle2, Wolfgang A. Weber1, and Ravinder K. Grewal1

1Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York; 2Endocrinology Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York; and 3Head and Neck Oncology Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York

There is significant interest in a better understanding of the genetic underpinnings of the increased glucose metabolic rates of cancer cells. Thyroid cancer demonstrates a broad variability of \textit{18}F-\textit{FDG} uptake as well as several well-characterized oncogenic mutations. In this study, we evaluated the differences in glucose metabolism of the \textit{BRAF}^{V600E} mutation versus \textit{BRAF} wild-type (\textit{BRAF-WT}) in patients with metastatic differentiated thyroid cancer (DTC) and poorly differentiated thyroid cancer (PDTC). \textbf{Methods:} Forty-eight DTC and 34 PDTC patients who underwent \textit{18}F-\textit{FDG} PET/CT for tumor staging were identified from a database search. All patients were tested for the \textit{BRAF}^{V600E} mutation and assigned to 1 of 2 groups: \textit{BRAF}^{V600E} mutated and \textit{BRAF-WT}. \textit{18}F-\textit{FDG} uptake of tumor tissue was quantified by maximum standardized uptake value (SUV_{max}) of the hottest malignant lesion in 6 prespecified body regions (thyroid bed, lymph nodes, lung, bone, soft tissue, and other). When there were multiple lesions in 1 of the prespecified body regions, only the 1 with the highest \textit{18}F-\textit{FDG} uptake was analyzed. \textbf{Results:} In the DTC cohort, 24 tumors harbored a \textit{BRAF}^{V600E} mutation, whereas 24 tumors were \textit{BRAF-WT}. \textit{18}F-\textit{FDG} uptake of \textit{BRAF}^{V600E}-positive lesions (median SUV_{max} 6.3; \textit{n} = 53) was significantly higher than that of \textit{BRAF-WT} lesions (median SUV_{max} 4.7; \textit{P} = 0.019). In the PDTC group, only 5 tumors were \textit{BRAF}^{V600E}-positive, and their \textit{18}F-\textit{FDG} uptake was not significantly different from the \textit{BRAF-WT} tumors. There was also no significant difference between the SUV_{max} of all DTCs and PDTCs, regardless of \textit{BRAF} mutational status (\textit{P} = 0.90). \textbf{Conclusion:} These data suggest that \textit{BRAF}^{V600E}-mutated DTCs are significantly more \textit{18}F-\textit{FDG}-avid than \textit{BRAF-WT} tumors. The effect of \textit{BRAF}^{V600E} on tumor glucose metabolism in PDTC needs further study in larger groups of patients. \textbf{Key Words:} thyroid cancer; \textit{BRAF}^{V600E}-mutation; \textit{18}F-\textit{FDG} uptake; DTC; PDTC

\textbf{J Nucl Med} 2015; 56:662-667

DOI: 10.2967/jnumed.114.150607

There is significant interest in a better understanding of the genetic underpinnings of the increased glucose metabolic rates of cancer cells. Thyroid cancer demonstrates a broad variability of \textit{18}F-\textit{FDG} uptake as well as several well-characterized oncogenic mutations. In this study, we evaluated the differences in glucose metabolism of the \textit{BRAF}^{V600E} mutation versus \textit{BRAF} wild-type (\textit{BRAF-WT}) in patients with metastatic differentiated thyroid cancer (DTC) and poorly differentiated thyroid cancer (PDTC). \textbf{Methods:} Forty-eight DTC and 34 PDTC patients who underwent \textit{18}F-\textit{FDG} PET/CT for tumor staging were identified from a database search. All patients were tested for the \textit{BRAF}^{V600E} mutation and assigned to 1 of 2 groups: \textit{BRAF}^{V600E} mutated and \textit{BRAF-WT}. \textit{18}F-\textit{FDG} uptake of tumor tissue was quantified by maximum standardized uptake value (SUV_{max}) of the hottest malignant lesion in 6 prespecified body regions (thyroid bed, lymph nodes, lung, bone, soft tissue, and other). When there were multiple lesions in 1 of the prespecified body regions, only the 1 with the highest \textit{18}F-\textit{FDG} uptake was analyzed. \textbf{Results:} In the DTC cohort, 24 tumors harbored a \textit{BRAF}^{V600E} mutation, whereas 24 tumors were \textit{BRAF-WT}. \textit{18}F-\textit{FDG} uptake of \textit{BRAF}^{V600E}-positive lesions (median SUV_{max} 6.3; \textit{n} = 53) was significantly higher than that of \textit{BRAF-WT} lesions (median SUV_{max} 4.7; \textit{P} = 0.019). In the PDTC group, only 5 tumors were \textit{BRAF}^{V600E}-positive, and their \textit{18}F-\textit{FDG} uptake was not significantly different from the \textit{BRAF-WT} tumors. There was also no significant difference between the SUV_{max} of all DTCs and PDTCs, regardless of \textit{BRAF} mutational status (\textit{P} = 0.90). \textbf{Conclusion:} These data suggest that \textit{BRAF}^{V600E}-mutated DTCs are significantly more \textit{18}F-\textit{FDG}-avid than \textit{BRAF-WT} tumors. The effect of \textit{BRAF}^{V600E} on tumor glucose metabolism in PDTC needs further study in larger groups of patients. \textbf{Key Words:} thyroid cancer; \textit{BRAF}^{V600E}-mutation; \textit{18}F-\textit{FDG} uptake; DTC; PDTC

\textbf{J Nucl Med} 2015; 56:662-667

DOI: 10.2967/jnumed.114.150607

Thyroid cancer is a genetically heterogeneous disease that demonstrates a broad spectrum of glucose metabolic rates as shown by \textit{18}F-\textit{FDG} PET/CT studies (1–3). Several studies have demonstrated that tumor \textit{18}F-\textit{FDG} uptake of poorly differentiated thyroid cancer (PDTC) is higher than that of differentiated thyroid cancer (DTC). Furthermore, survival of patients with thyroid cancer has been shown to be inversely correlated to the intensity of \textit{18}F-\textit{FDG} uptake as measured by maximum standardized uptake values (SUV_{max}) (4). These data suggest that \textit{18}F-\textit{FDG} uptake is a reflection of tumor proliferation and aggressiveness. However, some well-differentiated thyroid cancers and even benign thyroid nodules can exhibit high \textit{18}F-\textit{FDG} uptake (5). These clinical observations suggest that \textit{18}F-\textit{FDG} uptake by thyroid tumors is not necessarily caused by rapid proliferation but may be due to genetic alterations causing accelerated glucose metabolism.

About 45% of papillary DTCs harbor a \textit{BRAF}^{V600E} mutation, whereas RAS mutations and RET/PTC rearrangements are less common (6,7). On the other hand, RAS mutations are more frequent in PDTCs (8,9). DTCs harboring a \textit{BRAF}^{V600E} mutation show a higher expression of glucose transporter 1 than those with wild-type (WT) \textit{BRAF} indicating that tumors with \textit{BRAF}^{V600E} may show a higher \textit{18}F-\textit{FDG} uptake (10). A recently published multicenter study indicated a poorer prognosis for DTC patients harboring \textit{BRAF}^{V600E} mutation (11). Previous studies have also indicated that high \textit{18}F-\textit{FDG} uptake in thyroid cancer points to poorer prognosis (4). However, to our knowledge, no published clinical data suggest a direct association between \textit{BRAF}^{V600E} status and \textit{18}F-\textit{FDG} uptake.

In colorectal cancer as well as melanoma, \textit{BRAF}^{V600E} has been shown to regulate glycolysis independently of cell-cycle progression or cell death, also suggesting that \textit{BRAF}^{V600E} mutations may be associated with increased glycolysis (12,13). We therefore hypothesized that thyroid cancers with \textit{BRAF}^{V600E} mutations demonstrate higher \textit{18}F-\textit{FDG} uptake than \textit{BRAF-WT}, irrespective of histologic characteristics. We tested this hypothesis in a retrospective study of DTC and PDTC patients who underwent \textit{18}F-\textit{FDG} PET/CT for tumor staging and for whom the \textit{BRAF}^{V600E} mutational status was known.

\textbf{MATERIALS AND METHODS}

\textbf{Patients}

We performed an automated search for all DTC and PDTC patients who underwent \textit{18}F-\textit{FDG} PET/CT and had a \textit{BRAF} mutational status analysis performed on their primary tumors. Patients with secondary malignancies were excluded. The classification of tumors as DTC or PDTC is based on the interpretation of the histologic sections of the primary tumor by our institution’s Department of Pathology. Sequenom mass spectrometry or next-generation sequencing was used to assess the mutational status of all patients. Not all of the tumor samples were investigated for other mutations such as RAS or RET/PTC;
therefore, the patients were classified as BRAFV600E or BRAF-WT. Patient characteristics are provided in Table 1.

Our institutional review board approved this retrospective study, and the requirement to obtain informed consent was waived.

\textbf{18F-FDG PET/CT Imaging}

Because we accrued patients over a period of 14 y, the PET/CT scans had been obtained with multiple scanner types. However, patient preparation and image acquisition protocols were comparable over the years. All scans were acquired using PET/CT cameras, including Discovery LS, Discovery ST, and Discovery STE (all GE Healthcare) or Biograph LSO-16 (Siemens Medical Solutions). No information on the scanner system was available for 22% of the patients. Patients were instructed to fast for at least 6 h before 18F-FDG administration, and blood glucose levels were required to be less than 200 mg/dL at the time of injection. The scans were acquired from the upper thighs to the base of the skull (5–7 bed positions) 60–90 min after injection of about 400 MBq of 18F-FDG. CT was performed for attenuation correction and anatomic localization. Immediately after the CT image acquisition, PET data were acquired for 3–5 min per bed position. The attenuation-corrected PET data were reconstructed using an spheric volume of interest was recorded. Only 1 lesion in the predefined sites (Table 2) was analyzed. For lesions with insufficient contrast on CT (mostly bone lesions), the highest 18F-FDG uptake using SUV\textsubscript{max} was quantified for the lesion with the highest 18F-FDG uptake in SUV\textsubscript{max} normalized to the body weight of the patient. For measurement of SUVs, a spheric volume of interest encompassing the complete lesions was defined using the AW Volume Viewer Software (GE Healthcare). Areas of physiologic 18F-FDG uptake such as the myocardium were carefully excluded. Lesion size was measured on CT if the lesion was well delineated on the CT images. For lesions with insufficient contrast on CT (mostly bone lesions), tumor size was measured on PET as the maximum diameter of an isocontour defined by 45% of the maximum uptake within the lesion.

The highest standardized uptake value (SUV) (SUV\textsubscript{max}) within the volume of interest was recorded. Only 1 lesion in the predefined sites (Table 2) was analyzed. For lesions considered malignant on CT, but showing no focal 18F-FDG uptake on PET, an SUV\textsubscript{max} of \textdagger was recorded. We used this approach instead of recording the actual SUV at the site of the lesion because physiologic differences in background activity would otherwise significantly affect the SUV measurements. For example, a liver lesion that shows no focal 18F-FDG uptake could be assigned a higher SUV than a lung lesion with focal 18F-FDG uptake. Therefore, it seemed more appropriate to use a single SUV for all lesions that were not seen with positive contrast on PET.

We also analyzed whether there were differences between the SUV\textsubscript{max} of BRAFV600E and BRAF-WT patients when only the single lesion with the highest 18F-FDG uptake was analyzed. Because of the small number of patients with PDTC, this analysis was not performed for this group of patients.

Some of the 18F-FDG–positive lesions were small enough to be affected by partial-volume effects. In an attempt to minimize this effect on the comparison of the analyzed 2 groups, we performed a statistical test to rule out any differences in the distribution of the sizes of the lesions in the BRAFV600E and BRAF-WT groups (P = 0.27, Mann–Whitney U test).

\textbf{Statistical Analysis}

The statistical software GraphPad Prism (version 6.0; GraphPad Software, Inc.) was used to analyze the data. All reported P values were calculated using the 2-sided Mann–Whitney U test or Fisher exact test, and a P value of less than 0.05 was considered significant.

\textbf{RESULTS}

\textbf{Patient Characteristics}

Forty-eight DTCs and 34 PDTCs were identified from the database search (2001–2005, n = 1; 2006–2010, n = 44; 2011–2013, n = 37). All patients had undergone surgery before the PET/CT study, and all but 2 patients with PDTC had received radioiodine therapy. Radioiodine scans under thyroid-stimulating hormone (TSH) stimulation were negative in all patients, but there was evidence for disease progression based on thyroglobulin levels or abnormal morphologic imaging findings. Seven DTC patients died during follow-up (n = 5 [21%] BRAFV600E and 2 [8%] BRAF-WT). Of the PDTC patients, 12 died during follow-up (n = 2 [40%] BRAFV600E and 10 [34%] BRAF-WT).

In the DTC group, 24 tumors had a confirmed BRAFV600E mutation, and 24 were classified as BRAF-WTV600E (10 of those designated BRAF-WT had a RAS mutation, and the other mutational status was unknown). The PDTC group comprised 34 patients; 5 had a BRAFV600E mutation and 29 were classified as BRAF-WT (15 of these had a RAS mutation). Patient characteristics including sex, age, TNM status, thyroglobulin/TSH values, and radioiodine treatments are given in Table 1. BRAFV600E and BRAF-WT groups did not differ with respect to the time from pathologically confirmed diagnosis to PET (P = 0.86 for DTC and 0.16 for PDTC patients, Mann–Whitney U test). We also performed a statistical test to verify a homogeneous distribution of the age of patients in the compared groups (DTC group with BRAFV600E and BRAF-WT, P = 0.24, PDTC group with BRAFV600E and BRAF-WT, P = 0.10, Mann–Whitney U test).

\textbf{18F-FDG PET}

In the DTC patients, 101 lesions were analyzed. The number of 18F-FDG–positive lesions in the BRAFV600E and BRAF-WT groups was 54 (53%) and 39 (39%), respectively. The number of 18F-FDG–negative lesions was 3 (3%) in the BRAFV600E group and 5 (5%) in the BRAF-WT group. Twenty of the 39 (51%) 18F-FDG–positive lesions in the BRAF-WT lesions harbored RAS mutations. In the group of PDTCs, 60 lesions were analyzed. The number of 18F-FDG–positive lesions in the BRAFV600E group was 12 (20%), whereas none of the lesions in this group was 18F-FDG–negative. There were 37 (62%) 18F-FDG–positive and 11 (18%) 18F-FDG–negative lesions in the BRAF-WT PDTC group. Twelve of these 48 (25%) lesions in the BRAF-WT group harbored RAS mutations. Details about lesion characteristics are shown in Tables 1 and 2.

In the DTC group of patients, the BRAFV600E–positive lesions showed a significantly higher SUV\textsubscript{max} than BRAF-WT lesions (P = 0.019, Mann–Whitney U test) (Table 3; Fig. 1). There was also a significant difference when comparing only the single lesion with the highest SUV\textsubscript{max} per patient in the BRAFV600E and BRAF-WT groups (P = 0.04, Mann–Whitney U test).

In contrast, there was no significant difference of 18F-FDG uptake in the PDTC group between BRAFV600E and BRAF-WT (P = 0.85, Mann–Whitney U test, Fig. 2). Neither did we observe a difference of SUV\textsubscript{max} when comparing all DTC with PDTC lesions, regardless of mutational status (P = 0.90, Mann–Whitney U test, Table 3, Fig. 3). SUV\textsubscript{max} was approximately twice as high in BRAF-WT PDTC when compared with BRAF-WT DTC (P = 0.11, Mann–Whitney U test). Patients’ images are given in Figure 4.
TABLE 1

Patient Characteristics of \(BRAF^{V600E}\) and \(BRAF\)-WT Groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DTC</th>
<th>(BRAF^{V600E})</th>
<th>(BRAF)-WT</th>
<th>PDTC</th>
<th>(BRAF^{V600E})</th>
<th>(BRAF)-WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td></td>
<td>24 (2)*</td>
<td>24 (2)*</td>
<td>5</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Lesions†</td>
<td></td>
<td>57</td>
<td>44</td>
<td>12</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Lesions per patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5</td>
<td></td>
<td>13</td>
<td>16</td>
<td>3</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>5–10</td>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>>10</td>
<td></td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>(^{18}\text{F–FDG PET}) Positive</td>
<td></td>
<td>21</td>
<td>19</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Age (y) Mean ± SD</td>
<td></td>
<td>68 ± 11‡</td>
<td>64 ± 11‡</td>
<td>72 ± 11§</td>
<td>61 ± 13§</td>
<td></td>
</tr>
<tr>
<td>Sex Female</td>
<td></td>
<td>13</td>
<td>15</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>TNM TX</td>
<td></td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>T1/a/b</td>
<td></td>
<td>1/1/2</td>
<td>4/0/0</td>
<td>0/0/0</td>
<td>0/0/2</td>
<td></td>
</tr>
<tr>
<td>T2/a/b</td>
<td></td>
<td>2/0/0</td>
<td>5/0/0</td>
<td>1/0/0</td>
<td>7/0/0</td>
<td></td>
</tr>
<tr>
<td>T3/a/b</td>
<td></td>
<td>8/0/0</td>
<td>5/0/0</td>
<td>1/0/0</td>
<td>10/4/1</td>
<td></td>
</tr>
<tr>
<td>T4/a/b</td>
<td></td>
<td>2/3/1</td>
<td>3/1/3</td>
<td>0/2/0</td>
<td>0/2/3</td>
<td></td>
</tr>
<tr>
<td>NX/0</td>
<td></td>
<td>4/6</td>
<td>4/11</td>
<td>1/1</td>
<td>0/18</td>
<td></td>
</tr>
<tr>
<td>N1/a/b</td>
<td></td>
<td>6/3/5</td>
<td>3/3/3</td>
<td>1/0/2</td>
<td>3/4/4</td>
<td></td>
</tr>
<tr>
<td>MX/0/1</td>
<td></td>
<td>4/19/1</td>
<td>4/14/6</td>
<td>1/2/2</td>
<td>0/23/6</td>
<td></td>
</tr>
<tr>
<td>Radiiodine (GBq)‖</td>
<td></td>
<td>5.8/3.7/30.5</td>
<td>7.4/2.6/32.7</td>
<td>2.7/1.1/4.4</td>
<td>7.4/1.9/24.5</td>
<td></td>
</tr>
<tr>
<td>TSH (mU/L)¶</td>
<td></td>
<td>0.07/0.01/4.92</td>
<td>0.03/0.02/1.63</td>
<td>0.1/0.02/1.7</td>
<td>0.04/0.02/15.2</td>
<td></td>
</tr>
<tr>
<td>Thyroglobulin (ng/mL)#</td>
<td></td>
<td>6.9/0.2/1,930</td>
<td>360/0.3/37,000</td>
<td>46.9/2.2/670</td>
<td>270/1.7/1,4400</td>
<td></td>
</tr>
<tr>
<td>PET to D Mean ± SD</td>
<td></td>
<td>31 ± 41**</td>
<td>24 ± 36**</td>
<td>40 ± 51††</td>
<td>11 ± 26††</td>
<td></td>
</tr>
</tbody>
</table>

*No. of patients, with follicular variant of PTC in parentheses.
†Only 1 lesion per site per patient (Table 2) was analyzed.
‡\(P = 0.24\), Mann–Whitney U test.
§\(P = 0.10\), Mann–Whitney U test.
‖All patients with DTC received radioiodine; amount of \(^{131}\text{I}\) missing in \(n = 26\), \(n = 2\) patients with PDTC did not receive radioiodine, \(n = 1\) no data about radioiodine available, \(n = 8\) amount of \(^{131}\text{I}\) missing.
*For \(n = 2\) patients with PDTC, no data were available.
¶For \(n = 4\) patients with DTC and \(n = 3\) patients with PDTC, no thyroglobulin data were available and \(n = 4\) patients with DTC had thyroglobulin level below 0.3 ng/mL, but for all of these patients, progress was stated with CT. Difference of thyroglobulin values in WT DTC was significantly higher than in \(BRAF^{V600E}\) group (\(P = 0.009\)).
**\(P = 0.59\), Mann–Whitney U test.
††\(P = 0.16\), Mann–Whitney U test.
PET to D = time difference between PET and diagnosis verified by molecular pathology, given in months.
About 20% of the BRAFV600E-mutated DTC patients showed 18F-FDG uptake in the thyroid bed versus 4% in the BRAFV600E-negative group. On the other hand, 26% of the BRAFV600E-negative DTC patients showed 18F-FDG–avid metastases uptake in the skeleton versus 6% in the BRAFV600E-positive group (Table 2). There was a statistically significant difference regarding the sites’ thyroid bed (P = 0.008, Fisher exact test), lymph node (P = 0.031, Fisher exact test), and bone (P = 0.049, Fisher exact test).

<table>
<thead>
<tr>
<th>Site</th>
<th>BRAFV600E</th>
<th>BRAF-WT</th>
<th>PDTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid bed</td>
<td>11*</td>
<td>2*</td>
<td>4</td>
</tr>
<tr>
<td>Lymph node</td>
<td>20†</td>
<td>12†</td>
<td>3</td>
</tr>
<tr>
<td>Lung</td>
<td>17 (3)‡</td>
<td>19 (5)‡</td>
<td>4</td>
</tr>
<tr>
<td>Bone</td>
<td>3</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Soft tissue</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total number</td>
<td>57</td>
<td>44</td>
<td>12</td>
</tr>
</tbody>
</table>

*P = 0.008, Fisher exact test.
†P = 0.031, Fisher exact test.
‡P = 0.049, Fisher exact test.

Data in parentheses are no. of 18F-FDG–negative lesions. Other sites were peritoneum (n = 1), adrenal gland (n = 1), liver (n = 3), and tumor thrombus (n = 1).

DISCUSSION

The results of this study indicate that in DTC, 18F-FDG uptake is significantly higher for tumors with BRAFV600E mutations than for tumors that are BRAF-WT. In contrast, BRAFV600E mutational status demonstrated no correlation with tumor 18F-FDG uptake in PDTC, suggesting that in this disease, glucose metabolic activity is predominantly regulated by other signaling pathways. In our cohort, the tumors were not systematically tested for mutations other than BRAFV600E and tumors in the BRAF-WT group might harbor additional genetic defects that affect glucose metabolism.

High glucose metabolic rates of cancer cells are often explained as a consequence of proliferation: accelerated transcription and translation in proliferating cells decreases the adenosine triphosphate–to–adenosine diphosphate ratio, which causes allosteric effects on rate-limiting metabolic enzymes, thereby increasing glucose uptake. Although this explanation is widely accepted, it is at odds with the frequent clinical observation that some slowly proliferating malignancies (e.g., low-grade lymphomas) or even premalignant lesions (e.g., colonic polyps) can be highly hypermetabolic on 18F-FDG PET/CT studies (14–16).

An alternative, more recently proposed model is that activated oncogenes and inactivated tumor suppressors directly reprogram cellular metabolism. In this model, accelerated metabolic fluxes occur as a primary response to oncogenic signaling (15). This new model of tumor glucose metabolism implies that high 18F-FDG uptake in cancer cells is not necessarily the consequence of rapid proliferation but is caused by the activation of oncogenic pathways that regulate transporters and enzymes involved in the metabolism of glucose.

Although there are ample preclinical data on the relationship between oncogene activation and glucose metabolism, clinical data are relatively scarce. One approach to gain some insight into the relationship between oncogene activation and glucose metabolism...
in patients is to study the correlation between mutations in specific oncogenes and glucose metabolism. For instance, Parmenter et al. and Palaskas et al. showed a relationship between \(BRAF\) mutation and activation of mitogen-activated protein kinase downstream targets such as cMyc and Hif-1a and increased glucose metabolism for melanoma and basallike breast cancer, respectively \((12,17)\).

Our findings are consistent with these observations, because \(BRAF^{V600E}\) DTCs demonstrated significantly higher \(18\)F-FDG uptake than \(BRAF\)-negative tumors.

In patients with multiple metastatic lesions, many approaches can be used to summarize overall metabolic activity. Measuring \(18\)F-FDG uptake of all lesions in a patient can be impractical, because thyroid cancer patients may demonstrate innumerable lung metastases that are difficult to separate on PET images. More importantly, patients with multiple metastases will skew the measured average \(18\)F-FDG uptake. Therefore, we limited our analysis to a maximum of 1 lesion in each of the 7 prespecified body regions. We also analyzed the single lesion with the highest \(18\)F-FDG uptake. Using both types of analyses, we found a significantly higher \(18\)F-FDG glucose metabolic activity for DTC with a \(BRAF^{V600E}\) mutation, suggesting that the observed differences are unlikely due to lesion selection. Patients with \(BRAF^{V600E}\) had significantly lower thyroglobulin values than patients with \(BRAF\)-WT tumors. Thus, the higher \(18\)F-FDG uptake of \(BRAF^{V600E}\) tumors on PET cannot be explained by a higher tumor load.

There was no difference between the \(SUV_{\text{max}}\) of \(BRAF^{V600E}\)-positive DTC and \(BRAF^{V600E}\)-positive PDTC. The number of \(BRAF^{V600E}\)-positive PDTC patients was quite small, limiting the strength of the statistical analysis. Interestingly, \(18\)F-FDG uptake was approximately twice as high for \(BRAF\)-WT PDTC than for \(BRAF\)-WT DTC (Fig. 3). Consequently, we did not observe higher \(SUV_{\text{max}}\) for the overall group of \(BRAF\)-WT PDTC than \(BRAF\)-WT DTC.

In addition to differences in the metabolic activity of \(BRAF^{V600E}\) DTC and \(BRAF\)-WT DTC, we also found differences in their metastatic spread. \(BRAF^{V600E}\)-positive DTC tumors recurred more frequently to the lymph nodes and thyroid bed, whereas the \(BRAF\)-WT more often metastasized to bones, even though the number of follicular variants of the PTCs was low in both groups. This information might be helpful for the clinician when selecting specific imaging modalities for the workup of patients with rising thyroglobulin levels. In contrast, the \(SUV_{\text{max}}\) differences between \(BRAF^{V600E}\) and \(BRAF\)-WT in DTC and PDTC were too small to limit \(18\)F-FDG PET/CT imaging to \(BRAF^{V600E}\)-positive tumors. Therefore, our data do not support restricting \(18\)F-FDG PET/CT imaging to patients with PDTC.

The following limitations of our study should be noted. First, images were acquired by several PET scanners that differed in their sensitivity and spatial resolution. This difference may have contributed to the overlap of SUVs for the studied patient groups. Moreover, 53% of the lesions were smaller than 1.3 cm in diameter, and therefore partial-volume effects heavily influenced their SUVs. We could exclude a systematic difference of lesion size between the studied patient groups; nevertheless, partial-volume effects have likely contributed to the random variability of the SUV measurements.

Second, \(BRAF^{V600E}\) status and tumor differentiation were assessed for the resected primary tumor at the time of initial diagnosis. However, in many patients, \(18\)F-FDG PET/CT was performed several years later—accordingly, some of the tumors classified as DTCs at initial diagnosis may have evolved into PDTC. This time difference between
uptake between BRAF increased the scatter of the SUV measurement in all patient groups. Therefore, it is unlikely that the observed differences in 18F-FDG uptake between BRAF-WT and BRAFV600E patients show a higher number of 18F-FDG–positive tumor manifestations in the thyroid bed, whereas the BRAF-WT patients show a higher number of bone metastases. The BRAFV600E mutation had no significant effect on 18F-FDG uptake in PDTC in our retrospective study, but the patient population is too small to draw definitive conclusions for this subtype of thyroid cancer.

REFERENCES

CONCLUSION

In this retrospective study, BRAFV600E DTC patients show a significantly higher 18F-FDG uptake than BRAF-WT. Moreover, BRAF and Glucose in Thyroid Cancer • Nagarajah et al. 667

FIGURE 4. 18F-FDG PET/CT scans in metastatic thyroid cancer patients with and without BRAFV600E mutations. All PET images are scaled from 0.0 to 5.0 g/mL to allow for visual comparison of 18F-FDG uptake. PET scans were acquired in 2 steps (patients’ arms raised for images of chest and arms down for images of neck) to improve image quality. (A) A 66-y-old woman harboring DTC BRAF-WT showing lung nodule (1.1 cm in diameter on CT) with low 18F-FDG uptake (arrows). (B) An 83-y-old woman harboring DTC BRAFV600E with multiple 18F-FDG–positive lesions with high uptake. (C) A 64-y-old man harboring PDTC BRAF-WT with multiple lung nodules (up to 1.5 cm in diameter on CT; arrows) with low/no 18F-FDG uptake. (D) A 75-y-old woman harboring PDTC BRAFV600E with multiple lung nodules showing high 18F-FDG uptake.
Correlation of BRAF^{V600E} Mutation and Glucose Metabolism in Thyroid Cancer Patients: An 18F-FDG PET Study

James Nagarajah, Alan L. Ho, R. Michael Tuttle, Wolfgang A. Weber and Ravinder K. Grewal

Published online: March 26, 2015.
Doi: 10.2967/jnumed.114.150607

This article and updated information are available at:
http://jnm.snmjournals.org/content/56/5/662

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml