Integrin $\alpha_\nu\beta_6$–Targeted SPECT Imaging for Pancreatic Cancer Detection

Zhaofei Liu*,1,2, Hao Liu*,1,2, Teng Ma1,2, Xianlei Sun1,2, Jiyun Shi1, Bing Jia1,2, Yi Sun3, Jun Zhan4,5, Hongquan Zhang4,5, Zhaohui Zhu4, and Fan Wang1,2,6

1Medical Isotopes Research Center, Peking University, Beijing, China; 2Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; 3Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China; 4Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China; 5Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, China; and 6Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China

Integrin α_β_6, a member of the integrin family, is specifically expressed in many malignancies but not in normal organs. Overexpression of integrin α_β_6 is usually correlated with malignant potential and poor prognosis. In this study, we describe the synthesis and evaluation of a 99mTc-labeled integrin α_β_6–targeting peptide as a SPECT radiotracer for the in vivo imaging of integrin α_β_6 expression.

Methods: An integrin α_β_6–targeting peptide (denoted as the HK peptide) was conjugated with tri-hydrazinonicotinoyl (HYNIC) and radiolabeled with 99mTc using tricine and TPPTS (trisodium triphenylphosphine-3,3',3'-trisulfonate) as coligands. The in vitro and in vivo characteristics of 99mTc-HYNIC(tricine)(TPPTS)-HK (99mTc-HHK) were investigated in BxPC-3 (integrin α_β_6–positive) and HEK293 (integrin α_β_6–negative) models. The ability of 99mTc-HHK to detect liver metastasis of pancreatic cancer was evaluated using small-animal SPECT/CT.

Results: 99mTc-HHK showed high integrin α_β_6–binding specificity both in vitro and in vivo. 99mTc-HHK was cleared rapidly from the blood and normal organs except for the kidneys. The highest uptake (0.88 ± 0.12 percentage injected dose per gram) of 99mTc-HHK in BxPC-3 tumors was observed at 0.5 h after injection. High-contrast images of integrin α_β_6–positive tumors were obtained using 99mTc-HHK. The minimum nonspecific activity accumulation in normal liver tissues rendered high-quality SPECT/CT images of metastatic lesions.

Conclusion: 99mTc-HHK is a promising SPECT radiotracer for the noninvasive imaging of integrin α_β_6 expression in vivo. SPECT/CT with 99mTc-HHK could provide an effective approach for the noninvasive detection of primary and metastatic lesions of integrin α_β_6–positive tumors.

Key Words: pancreatic cancer; molecular imaging; integrin α_β_6; phage display; SPECT/CT

DOI: 10.2967/jnumed.113.132969

Pancreatic cancer is one of the most deadly cancers, ranking as the fourth leading cause of cancer-related deaths in the United States (1). Most pancreatic cancer patients are diagnosed with advanced stages of this disease, for which curative operation is not a suitable treatment option. Given that the 5-y survival rate after diagnosis is generally below 5% (2), the best approach for improving the odds of curing or controlling pancreatic cancer involves early detection and accurate staging.

Advances in molecular imaging techniques have provided numerous opportunities for making earlier and more accurate diagnosis, determining the staging information of various cancers, and monitoring their treatment responses. The development of molecular imaging agents that target specific tumor markers could provide more sensitive and more specific cancer detection. Integrin α_β_6, a member of the integrin protein family, is overexpressed in numerous types of carcinomas, such as colon, lung, cervical, ovarian, and pancreatic cancers, but is expressed at low or undetectable levels in healthy organs (3). Pancreatic ductal adenocarcinomas exhibit the highest integrin α_β_6 expression among gastroenteropancreatic adenocarcinomas (4). Moreover, the high expression of integrin α_β_6 in carcinomas is a prognostic factor of the disease and is correlated with poor patient survival (5,6). Thus, molecular imaging agents that target integrin α_β_6 would be highly useful in the receptor-targeted detection of pancreatic cancer and in the noninvasive monitoring of tumor prognosis.

Pioneering studies have recently been conducted on the development of PET radiotracers for in vivo integrin α_β_6 imaging (7–10). Haussner et al. (7) prepared an 18F-radiolabeled 20-mer integrin α_β_6–targeting peptide (18F-FBA-A20FMDV2) using a sequence derived from the G-H loop of an envelope protein of the foot-and-mouth disease virus. 18F-FBA-A20FMDV2 exhibited specific integrin α_β_6 targeting in vivo. However, low tumor uptake and poor tumor retention limit the general application of this peptide. To increase the tumor uptake and improve the pharmacokinetics of 18F-FBA-A20FMDV2, 2 new radiotracers with polyethylene glycol (PEG) spacers were developed. Small-animal PET imaging results revealed that the modified compounds show significantly improved tumor retention (8). Kimura et al. engineered several highly stable cysteine knot peptides, and the 64Cu–(9) and 18F–(10) labeled compounds proved to be potentially useful for the PET imaging of integrin α_β_6.

Although 18F-FDG has been widely used in clinical settings, several drawbacks are associated with 18F-labeled peptide radiotracers. For
The Journal of Nuclear Medicine
Vol. 55
No. 6
June 2014

Cell Culture and Animal Models

The BxPC-3 human pancreatic cancer cell line was obtained from the American Type Culture Collection. BxPC-3 cells were grown in RPMI-1640 medium and supplemented with phosphate-buffered saline (10% fetal bovine serum at 37°C in humified atmosphere containing 5% CO2).

Preparation of 99mTc-HHK

Detailed procedures for IHC conjugation of the HK peptide are described in the Supplemental "Materials and Methods" section. The HK peptide was labeled with 99mTc as previously reported (16,17). A 99mTc-conjugated RGDLATLRQLAQEDGVVGVRK (HYK) was used to test the specificity of the tracer for integrin α6β1 using a previously described displacement assay using IODOGEN (Sigma) method (16). The best-fit 50% inhibitory concentration (IC50) values for BxPC-3 and HEK293 cells (5 × 104 in 100μL of phosphate-buffered saline) were also performed using BAPC-3 (α6+β1-positive) and HEK293 (α6-β1-negative) cells. The results were expressed as a percentage of the total added tracer dose per cell. The expression status of integrin α6β1 in BxPC-3 and HEK293 cells was tested by fluorescence-activated cell sorting analysis as described in the "Materials and Methods" section.

Biodistribution

In vivo biodistribution of 99mTc-HHK was assessed using BxPC-3 or HEK293 tumor xenografts. Female nude mice bearing BxPC-3 or HEK293 tumors were injected with 0.37 MBq of 99mTc-HHK via the tail vein. Blood, tumor, major organs, and tissues were collected 1 h after injection. Blood samples were collected by cardiac puncture. Tissue samples were weighed. The radioactivity in the tissue was measured using a gamma counter. Results were expressed as a percentage of total added tracer dose per g of tissue (%ID/g). Two blocking studies were also performed in 8 nude mice bearing BxPC-3 tumors (5 × 105 cells) in 50 μL of phosphate-buffered saline) or HEK293 (5 × 104 cells) using BAPC-3 (α6+β1-positive) and HEK293 (α6-β1-negative) cells. The results were expressed as a percentage of the total added tracer dose per cell.

Planar and Small Animal PET Imaging

Each BxPC-3 or HEK293 tumor–bearing nude mouse was injected with 0.37 MBq of 99mTc-HHK via the tail vein. Planar imaging and SPECT/CT were performed 1 h after injection. Scans were acquired in 128 × 128 matrix. Images were reconstructed using filtered back-projection with a Ram-Lak filter to obtain transaxial images of 5 mm slice thickness.

General

The peptides RGDLATLRQLAQEDGVVGVRK (HYK) and a scrambled peptide (HYK) were synthesized by China Academy of Science. BxPC-3 cells were grown in RPMI-1640 (Millipore, USA) and HEK293 cells were grown in Dulbecco’s modified Eagle medium. Both cell lines were cultured in medium supplemented with 10% fetal bovine serum at 37°C in humified atmosphere containing 5% CO2. All animal experiments were performed in accordance with the guidelines of Peking University Animal Care and Use Committee. To obtain BxPC-3 and HEK293 subcutaneous tumor models, BxPC-3 cells (5 × 106 in 50 μL of phosphate-buffered saline) or HEK293 cells (5 × 105 in 100 μL of phosphate-buffered saline) were coinjected with 500 μL of unlabeled HK peptide and 0.37 MBq of 99mTc-HHK in nude mice. The animals were used for in vivo studies when the tumor size reached 200–300 mm3 (4 wk after inoculation). A mouse model for liver metastasis was established by direct intrathoracic injection of 1 × 106 BAPC-3 cells (5 × 105 cells) of liver metastases in female BALB/c mice (4 wk after inoculation). The mice were used for small-animal imaging of integrin αvβ6-positive tumors in vivo.
PET scans and image analysis were performed using a microPET R4 rodent model scanner (Siemens Medical Solutions). Each BxPC-3 or HEK293 tumor-bearing nude mouse was injected via the tail vein with 3.7 MBq of 18F-FDG under 2% isoflurane anesthesia ($n = 4$ per group). Five-minute static PET scans were acquired at 1 h after injection, and the region-of-interests–derived %ID/g values were calculated as previously described (17). As a control experiment, 3.7 MBq of 18F-FDG was coinjected with 500 μg of the cold HK peptide into a group of 4 BxPC-3–bearing mice, and small-animal PET scans were then obtained.

Small-Animal SPECT/CT Imaging

Small-animal SPECT/CT scans of the BxPC-3 mouse model of liver metastasis were obtained using a NanoSPECT/CT tomograph (Bioscan Inc.) as previously described (17). Briefly, each mouse was injected via the tail vein with 37 MBq of 99mTc-HHK. At 1 h after injection, the mice were anesthetized by inhalation of 2% isoflurane and imaged using the NanoSPECT/CT camera. The SPECT and CT fusion images were obtained using the automatic fusion feature of the InVivoScope program (Bioscan Inc.). After SPECT/CT imaging, BxPC-3 mice with liver metastasis were sacrificed. Livers were excised and macroscopically surveyed to detect tumor lesions. For further confirmation of the tumor lesions, metastatic liver lesions were fixed in 5% buffered formalin, embedded in paraffin, cut into sections, and then subjected to hematoxylin and eosin (H&E) staining.

Statistical Analysis

Quantitative data were expressed as mean ± SD. Means were compared using the Student t test. P values of less than 0.05 were considered statistically significant.

RESULTS

Chemistry and Radiochemistry

Fmoc-HK-HYNIC was prepared by direct conjugation of Fmoc-HK peptide with HYNIC-NHS. After the removal of the Fmoc group, the final product HK-HYNIC (HHK) was confirmed by HPLC and mass spectrometry. The 99mTc-labeling procedure was done within 30 min, with a yield of 94.8% ± 1.1% ($n = 16$). The radiochemical purity was greater than 98%, and the specific activity of 99mTc-HHK (Supplemental Fig. 1) was greater than 180 GBq/μmol.

In Vitro Integrin $\alpha_v\beta_6$ Specificity

Fluorescence-activated cell sorting analysis clearly showed that BxPC-3 tumor cells were integrin $\alpha_v\beta_6$–positive, whereas HEK293 cells were integrin $\alpha_v\beta_6$–negative (Fig. 1A). Both HK and HKH blocked the binding of 125I-HYK to integrin $\alpha_v\beta_6$–expressing BxPC-3 cells in a concentration-dependent manner. The IC$_{50}$ values for HK and HKH were 2.16 ± 0.11 and 2.72 ± 0.15 nM, respectively (Fig. 1B).

We also investigated the cell-binding properties of 99mTc-HHK in both integrin $\alpha_v\beta_6$–positive BxPC-3 and integrin $\alpha_v\beta_6$–negative HEK293 cells. As shown in Figure 1C, the binding values (percentage of the total added dose per 105 cells) of 99mTc-HHK for BxPC-3 and HEK293 cells were 4.90 ± 0.31 and 0.18 ± 0.05, respectively ($P < 0.001$). The binding of 99mTc-HHK to BxPC-3 cells was significantly inhibited by the addition of an excess dose of the HK peptide (from 4.90 ± 0.31 to 0.09 ± 0.01, $P < 0.001$).

Biodistribution

As shown in Figure 2A, the uptake values of 99mTc-HHK in BxPC-3 tumors were 0.88 ± 0.12, 0.52 ± 0.03, 0.36 ± 0.06, and 0.32 ± 0.04 %ID/g at 0.5, 1, 2, and 4 h after injection, respectively. The tumor uptake of 99mTc-HHK was significantly higher than that in the blood and normal organs, such as the heart, pancreas, bone, and muscle, at almost all time points examined ($P < 0.05$).

FIGURE 1. (A) Representative flow cytometry histograms of BxPC-3 and HEK293 cells without (black-outlined spectrum) and with (red-outlined spectrum) addition of antintegri $\alpha_v\beta_6$ antibody. (B) Inhibition of 125I-HYK binding to integrin $\alpha_v\beta_6$ on BxPC-3 cells by HK and HKH peptides. (C) Binding of 99mTc-HHK to BxPC-3 (without or with 6 μg of peptide blocking) and HEK293 cells. %AD/105 cells = percentage of total added dose per 105 cells.

99mTc-HHK showed similar biodistribution patterns in the normal organs of integrin $\alpha_v\beta_6$–negative HEK293 mice, compared with those in integrin $\alpha_v\beta_6$–positive BxPC-3 tumor–bearing mice (Fig. 2B). However, the uptake of 99mTc-HHK in BxPC-3 tumors was significantly higher than that in HEK293 tumors (0.88 ± 0.12 vs. 0.32 ± 0.07 %ID/g, $P < 0.01$, and 0.52 ± 0.03 vs. 0.16 ± 0.03 %ID/g, $P < 0.001$, at 0.5 and 1 h after injection, respectively). The coinjection of an excess dose of the cold HK peptide with 99mTc-HHK resulted in a significantly reduced tumor uptake at 1 h after injection (from 0.52 ± 0.03 to 0.28 ± 0.08 %ID/g, $n = 4$, $P < 0.01$). In contrast, the coinjection of an excess dose of a scrambled peptide with 99mTc-HHK did not reduce the tumor uptake (0.52 ± 0.03 vs. 0.60 ± 0.17 %ID/g, $n = 4$, $P > 0.05$; Fig. 2B).

Planar Imaging and Small-Animal PET Imaging

Three groups of tumor–bearing mice (BxPC-3, BxPC-3/HK blocking, and HEK293) were subjected to both 99mTc-HHK and 18F-FDG imaging at 1 h after injection. As shown in Figure 3A, the BxPC-3 tumor was clearly visible, with high contrast in relation to the contralateral background after 99mTc-HHK injection. The tumor-to-blood and tumor-to-muscle ratios were both greater than 2 (Fig. 3C). The BxPC-3 tumor uptake of 99mTc-HHK was significantly inhibited (Figs. 3A and 3D) in the HK blocking group. 99mTc-HHK was unable to detect HEK293 tumors because of the negative expression of integrin $\alpha_v\beta_6$ in this tumor. For direct comparison, the 18F-FDG PET scan of the same mice was obtained before the 99mTc-HHK scan. As shown in Figure 3B, all of the tumors in the 3 groups can be clearly visualized by 18F-FDG PET. The accumulation of

INTEGRIN $\alpha_v\beta_6$–TARGETED SPECT IMAGING

Liu et al.

991
Accumulated evidence shows the vital function of integrin $\alpha_v\beta_6$ in cancer progression, invasion, and metastasis. Integrin $\alpha_v\beta_6$ is significantly upregulated in many carcinomas, including approximately 100% of pancreatic cancers, whereas it is undetectable or is not expressed in the corresponding normal tissues (3). Blockade of integrin $\alpha_v\beta_6$ by a specific antibody inhibits tumor progression in animal models (20). Thus, integrin $\alpha_v\beta_6$ is a promising biomarker for cancer diagnosis and therapy. Consequently, several peptides and antibodies have been developed for integrin $\alpha_v\beta_6$ targeting.

A high-affinity 20-mer peptide antagonist (TP H2009.1) of integrin $\alpha_v\beta_6$ was previously developed by phage display (13,15). The integrin $\alpha_v\beta_6$-binding region of the 20-mer peptide is the DLXXL motif (21), where X indicates a nonspecific amino acid. This region is also conserved in many other integrin $\alpha_v\beta_6$-targeting ligands (7–10,22,23). We synthesized a SPECT radiotracer (99mTc-HHK) based on the TP H2009.1 peptide and evaluated the potential of this radiotracer in integrin $\alpha_v\beta_6$–targeted cancer detection. Using the integrin $\alpha_v\beta_6$–positive BxPC-3 cell line (Fig. 1A), we found that introduction of the HYNIC chelator to the HK peptide did not significantly affect receptor binding (Fig. 1B). Similar to that of 125I-HYK, the binding of 99mTc-HHK to integrin $\alpha_v\beta_6$–positive BxPC-3 cells also exhibited a dose-dependent inhibition in the presence of cold HK peptide, and the IC$_{50}$ value was calculated to be 0.65 ± 0.15 nM (Supplemental Fig. 2). Taken together, in vitro studies suggest that 99mTc-HHK maintains high receptor-binding affinity and specificity and could thus be tested for in vivo applications.

The in vivo integrin $\alpha_v\beta_6$–binding specificity of 99mTc-HHK was clearly demonstrated by the biodistribution and imaging studies. 99mTc-HHK showed rapid tumor accumulation in the BxPC-3 tumor model, and the radiotracer showed maximum tumor uptake values at 0.5 h after injection. As predicted, 99mTc-HHK uptake in the integrin $\alpha_v\beta_6$–negative HEK293 tumors was not significantly different (Fig. 3E).

Small-Animal SPECT/CT Imaging

As shown in Figure 4A, a liver metastatic BxPC-3 tumor lesion was clearly detected by 99mTc-HHK with high contrast in the abdominal region of the mouse. Supplemental Video 1 better shows the in vivo pharmacokinetics and tumor-targeting efficiency of 99mTc-HHK at 1 h after injection. After SPECT imaging, the mouse was sacrificed, and the presence of the well-established tumor growth in the liver was verified by anatomic visualization after dissection. The liver showed an extensive tumor burden (Figs. 4B and 4C) in the mouse that had a positive 99mTc-HHK imaging signal (Fig. 4A). The H&E staining results of the dissected tumor lesion further confirmed the 99mTc-HHK SPECT/CT findings (Fig. 4D).

DISCUSSION

Accumulated evidence shows the vital function of integrin $\alpha_v\beta_6$ in cancer progression, invasion, and metastasis. Integrin $\alpha_v\beta_6$ is significantly upregulated in many carcinomas, including approximately 100% of pancreatic cancers, whereas it is undetectable or is not expressed in the corresponding normal tissues (3). Blockade of integrin $\alpha_v\beta_6$ by a specific antibody inhibits tumor progression in animal models (20). Thus, integrin $\alpha_v\beta_6$ is a promising biomarker for cancer diagnosis and therapy. Consequently, several peptides and antibodies have been developed for integrin $\alpha_v\beta_6$ targeting.

A high-affinity 20-mer peptide antagonist (TP H2009.1) of integrin $\alpha_v\beta_6$ was previously developed by phage display (13,15). The integrin $\alpha_v\beta_6$-binding region of the 20-mer peptide is the DLXXL motif (21), where X indicates a nonspecific amino acid. This region is also conserved in many other integrin $\alpha_v\beta_6$-targeting ligands (7–10,22,23). We synthesized a SPECT radiotracer (99mTc-HHK) based on the TP H2009.1 peptide and evaluated the potential of this radiotracer in integrin $\alpha_v\beta_6$–targeted cancer detection. Using the integrin $\alpha_v\beta_6$–positive BxPC-3 cell line (Fig. 1A), we found that introduction of the HYNIC chelator to the HK peptide did not significantly affect receptor binding (Fig. 1B). Similar to that of 125I-HYK, the binding of 99mTc-HHK on integrin $\alpha_v\beta_6$–positive BxPC-3 cells also exhibited a dose-dependent inhibition in the presence of cold HK peptide, and the IC$_{50}$ value was calculated to be 0.65 ± 0.15 nM (Supplemental Fig. 2). Taken together, in vitro studies suggest that 99mTc-HHK maintains high receptor-binding affinity and specificity and could thus be tested for in vivo applications.

The in vivo integrin $\alpha_v\beta_6$–binding specificity of 99mTc-HHK was clearly demonstrated by the biodistribution and imaging studies. 99mTc-HHK showed rapid tumor accumulation in the BxPC-3 tumor model, and the radiotracer showed maximum tumor uptake values at 0.5 h after injection. As predicted, 99mTc-HHK uptake in the integrin $\alpha_v\beta_6$–negative HEK293 tumors was not significantly different (Fig. 3E).

Small-Animal SPECT/CT Imaging

As shown in Figure 4A, a liver metastatic BxPC-3 tumor lesion was clearly detected by 99mTc-HHK with high contrast in the abdominal region of the mouse. Supplemental Video 1 better shows the in vivo pharmacokinetics and tumor-targeting efficiency of 99mTc-HHK at 1 h after injection. After SPECT imaging, the mouse was sacrificed, and the presence of the well-established tumor growth in the liver was verified by anatomic visualization after dissection. The liver showed an extensive tumor burden (Figs. 4B and 4C) in the mouse that had a positive 99mTc-HHK imaging signal (Fig. 4A). The H&E staining results of the dissected tumor lesion further confirmed the 99mTc-HHK SPECT/CT findings (Fig. 4D).

DISCUSSION

Accumulated evidence shows the vital function of integrin $\alpha_v\beta_6$ in cancer progression, invasion, and metastasis. Integrin $\alpha_v\beta_6$ is significantly upregulated in many carcinomas, including approximately 100% of pancreatic cancers, whereas it is undetectable or is not expressed in the corresponding normal tissues (3). Blockade of integrin $\alpha_v\beta_6$ by a specific antibody inhibits tumor progression in animal models (20). Thus, integrin $\alpha_v\beta_6$ is a promising biomarker for cancer diagnosis and therapy. Consequently, several peptides and antibodies have been developed for integrin $\alpha_v\beta_6$ targeting.

A high-affinity 20-mer peptide antagonist (TP H2009.1) of integrin $\alpha_v\beta_6$ was previously developed by phage display (13,15). The integrin $\alpha_v\beta_6$-binding region of the 20-mer peptide is the DLXXL motif (21), where X indicates a nonspecific amino acid. This region is also conserved in many other integrin $\alpha_v\beta_6$-targeting ligands (7–10,22,23). We synthesized a SPECT radiotracer (99mTc-HHK) based on the TP H2009.1 peptide and evaluated the potential of this radiotracer in integrin $\alpha_v\beta_6$–targeted cancer detection. Using the integrin $\alpha_v\beta_6$–positive BxPC-3 cell line (Fig. 1A), we found that introduction of the HYNIC chelator to the HK peptide did not significantly affect receptor binding (Fig. 1B). Similar to that of 125I-HYK, the binding of 99mTc-HHK on integrin $\alpha_v\beta_6$–positive BxPC-3 cells also exhibited a dose-dependent inhibition in the presence of cold HK peptide, and the IC$_{50}$ value was calculated to be 0.65 ± 0.15 nM (Supplemental Fig. 2). Taken together, in vitro studies suggest that 99mTc-HHK maintains high receptor-binding affinity and specificity and could thus be tested for in vivo applications.
18F-FDG is currently the most commonly used radiotracer for cancer detection and monitoring of treatment efficacy in clinical settings. However, 18F-FDG is not tumor receptor–specific. 99mTc-HHK failed to detect tumors in the integrin $\alpha_v\beta_6$–blockade and integrin $\alpha_v\beta_6$–negative tumor models. By contrast, 18F-FDG PET was unable to differentiate between tumors with integrin $\alpha_v\beta_6$ expression and those without such expression. These results demonstrate that 99mTc-HHK SPECT is superior to 18F-FDG PET for the noninvasive imaging of integrin $\alpha_v\beta_6$ expression during tumor growth and for monitoring changes in integrin $\alpha_v\beta_6$ levels after anticancer treatment.

SPECT/CT imaging combines the high sensitivity of SPECT and the high spatial resolution of CT and provides both anatomic and functional information on the imaged cancer tissue. Metastasis to the liver is a common clinical finding for advanced pancreatic cancer (26,27); thus, we determined the performance of 99mTc-HHK SPECT/CT in the noninvasive detection of liver metastasis of pancreatic cancer using high-sensitivity and high-resolution small-animal SPECT/CT imaging. The high-resolution CT scan provides anatomic information, whereas SPECT imaging with 99mTc-HHK provides the integrin $\alpha_v\beta_6$ expression level of the metastasis. SPECT/CT imaging allows the identification and localization of small metastatic liver lesions (<5 mm in diameter) with high sensitivity and accuracy (Fig. 4), suggesting that 99mTc-HHK–based SPECT/CT has potential applications in many clinical scenarios, including early detection of small metastatic lesions and noninvasive imaging of residual or recurrent lesions after cancer surgery. The liver metastatic model used in this study is that of late-stage metastatic formation. The early stages of pancreatic cancer metastasis, such as local invasion at the primary lesion site and local lymphatic metastasis, are bypassed by direct injection of pancreatic tumor cells into the liver. Future studies using more suitable models of early spontaneous metastatic formation phases may further validate the capability of 99mTc-HHK for integrin $\alpha_v\beta_6$–targeted detection of early pancreatic cancer metastasis.

Compared with other integrin $\alpha_v\beta_6$–targeting radiotracers, 99mTc-HHK is more readily available (Supplemental Table 1). The high labeling yield of 99mTc-HHK allows the formulation of kits that can be extensively used in preclinical and clinical applications. However, a major drawback of 99mTc-HHK is its relatively low tumor uptake, which may be partly due to its in vivo metabolic instability. Optimization strategies (e.g., cyclization, PEGylation, and multimerization) (28) that have been successfully used to modify Arg-Gly-Asp (RGD)–based radiotracers may be required to further increase the receptor-binding affinity and improve the in vivo pharmacokinetics of 99mTc-HHK. With improved in vivo behaviors, the integrin $\alpha_v\beta_6$–targeted SPECT imaging could provide further specificity and sensitivity for early detection of small metastatic lesions and noninvasive imaging of residual or recurrent lesions after cancer surgery.
α,β₆-targeted SPECT tracer may be used in clinical trials for cancer screening, micrometastasis detection, and treatment monitoring.

CONCLUSION

⁹⁹ᵐTc-HHK exhibited specific integrin α,β₆ binding both in vitro and in vivo. ⁹⁹ᵐTc-HHK was successfully used in the specific detection of subcutaneous pancreatic tumor xenografts and liver metastases. Further optimization of ⁹⁹ᵐTc-HHK may eventually yield a suitable radiotracer for the detection of integrin α,β₆-positive tumors and for monitoring of the receptor expression during integrin α,β₆-targeted cancer treatment in clinical settings.

DISCLOSURE

The costs of publication of this article were defrayed in part by the payment of page charges. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734. This work was supported by National Natural Science Foundation of China (NSFC) projects (81222019, 81125011, 81000625, 82101217, 81321003, and 81230051), “973” projects (2013CB733802 and 2011CB707705), grants from the Ministry of Science and Technology of China (2011YQ030114, 2012ZX09102301-018, and 2012BAK25B03-16), grants from the Ministry of Education of China (31300 and BMU20110263), grants from the Beijing Natural Science Foundation (7132131 and 7132123), grants from the Beijing Natural Science Foundation (7132131 and 7132123), and a grant from the Beijing Nova Program (Z121107002512010). No other potential conflict of interest relevant to this article was reported.

REFERENCES

Integrin $\alpha_v\beta_6$-Targeted SPECT Imaging for Pancreatic Cancer Detection

Zhaofei Liu, Hao Liu, Teng Ma, Xianlei Sun, Jiyun Shi, Bing Jia, Yi Sun, Jun Zhan, Hongquan Zhang, Zhaohui Zhu and Fan Wang

Published online: April 7, 2014.
Doi: 10.2967/jnumed.113.132969

This article and updated information are available at:
http://jnm.snmjournals.org/content/55/6/989

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml