Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
Review ArticleContinuing Education

Radionuclide Imaging in Ischemic Stroke

Wolf-Dieter Heiss
Journal of Nuclear Medicine November 2014, 55 (11) 1831-1841; DOI: https://doi.org/10.2967/jnumed.114.145003
Wolf-Dieter Heiss
Max Planck Institute for Neurological Research, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Ischemic stroke is caused by interruption or significant impairment of blood supply to the brain, which leads to a cascade of metabolic and molecular alterations resulting in functional disturbance and morphologic damage. The changes in regional cerebral blood flow and regional metabolism can be assessed by radionuclide imaging, especially SPECT and PET. SPECT and PET have broadened our understanding of flow and metabolic thresholds critical for maintenance of brain function and morphology: PET was essential in the transfer of the concept of the penumbra to clinical stroke and thereby had a great impact on developing treatment strategies. Receptor ligands can be applied as early markers of irreversible neuronal damage and can predict the size of the final infarcts, which is important for decisions on invasive therapy in large (“malignant”) infarction. With SPECT and PET, the reserve capacity of the blood supply can be tested in obstructive arteriosclerosis, which is essential for planning interventions. The effect of a stroke on surrounding and contralateral primarily unaffected tissue can be investigated, helping to understand symptoms caused by disturbance in functional networks. Activation studies are useful to demonstrate alternative pathways to compensate for lesions and to test the effect of rehabilitative therapy. Radioisotope studies help to detect neuroinflammation and its effect on extension of tissue damage. Despite the limitations of broad clinical application of radionuclide imaging, this technology has a great impact on research in cerebrovascular diseases and still has various applications in the management of stroke.

  • SPECT
  • PET
  • stroke
  • cerebral ischemia
  • penumbra
  • infarction
  • reperfusion
  • hemodynamic reserve
  • neuroinflammation
  • diaschisis
  • functional activation

Footnotes

  • Published online Oct. 9, 2014.

  • Learning Objectives: On successful completion of this activity, participants should be able to describe (1) the physiologic and metabolic variables relevant for brain function and the radionuclides and methods to measure these variables in cerebrovascular disease, especially ischemic stroke; (2) the radionuclide methods to determine the thresholds of flow and metabolism relevant for preservation of function and morphology and the obtained values in their relevance to prognosis and potential treatment; and (3) the applications of radionuclide imaging for identifying pathophysiologic changes responsible for extension of ischemic lesions, for defining the hemodynamic reserve in vascular disease, for detecting remote effects outside the primary lesions, and for locating compensatory activation in disturbed functional networks.

  • Financial Disclosure: Dr. Heiss is supported by the Wolf-Dieter Heiss Foundation within the Max Planck Society. The author of this article has indicated no other relevant relationships that could be perceived as a real or apparent conflict of interest.

  • CME Credit: SNMMI is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNMMI designates each JNM continuing education article for a maximum of 2.0 AMA PRA Category 1 Credits. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, SAM, and other credit types, participants can access this activity through the SNMMI website (http://www.snmmilearningcenter.org) through November 2017.

  • © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
View Full Text
PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine: 55 (11)
Journal of Nuclear Medicine
Vol. 55, Issue 11
November 1, 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Radionuclide Imaging in Ischemic Stroke
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Radionuclide Imaging in Ischemic Stroke
Wolf-Dieter Heiss
Journal of Nuclear Medicine Nov 2014, 55 (11) 1831-1841; DOI: 10.2967/jnumed.114.145003

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Radionuclide Imaging in Ischemic Stroke
Wolf-Dieter Heiss
Journal of Nuclear Medicine Nov 2014, 55 (11) 1831-1841; DOI: 10.2967/jnumed.114.145003
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • PHYSIOLOGIC VARIABLES AFFECTED IN ISCHEMIC STROKE
    • RADIOACTIVE TRACERS USED IN STROKE
    • APPLICATIONS OF RADIOISOTOPE STUDIES IN STROKE
    • RADIOISOTOPE IMAGING AS A SURROGATE MARKER FOR TREATMENT EFFICIENCY AND FOR SELECTION OF PATIENTS FOR SPECIAL THERAPEUTIC STRATEGIES
    • MICROGLIAL ACTIVATION AS AN INDICATOR OF INFLAMMATION
    • HEMODYNAMIC AND METABOLIC RESERVE IN ARTERIAL OCCLUSIVE DISEASE
    • DEACTIVATION OF REMOTE TISSUE (DIASCHISIS)
    • ACTIVATION STUDIES IN STROKE PATIENTS
    • CONCLUSION AND FUTURE PERSPECTIVES
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • This Month in JNM
  • PubMed
  • Google Scholar

Cited By...

  • Erythropoietin Pretreatment of Transplanted Endothelial Colony-Forming Cells Enhances Recovery in a Cerebral Ischemia Model by Increasing Their Homing Ability: A SPECT/CT Study
  • Spatiotemporal PET Imaging of Dynamic Metabolic Changes After Therapeutic Approaches of Induced Pluripotent Stem Cells, Neuronal Stem Cells, and a Chinese Patent Medicine in Stroke
  • Imaging Inflammation in Cerebrovascular Disease
  • Google Scholar

More in this TOC Section

  • Treatment Response Evaluation in Prostate Cancer Using PSMA PET/CT
  • Approaches to Imaging Immune Activation Using PET
  • Large Language Models and Large Multimodal Models in Medical Imaging: A Primer for Physicians
Show more Continuing Education

Similar Articles

Keywords

  • SPECT
  • PET
  • stroke
  • cerebral ischemia
  • penumbra
  • infarction
  • reperfusion
  • hemodynamic reserve
  • neuroinflammation
  • diaschisis
  • functional activation
SNMMI

© 2025 SNMMI

Powered by HighWire