Overcoming the 99mTc Shortage: Are Options Being Overlooked?

Molybdenum-99 (99Mo) (\sim66-h half-life) decays to 99mTc (\sim6-h half-life), an isotope that is widely used for routine diagnostic applications in nuclear medicine. In the United States alone, it is estimated that $>$13 million 99mTc diagnostic studies are performed annually. Separation of 99mTc from the 99Mo parent requires repeated, efficient, and simple methods. Fission of 235U continues to be the source of high-specific-activity (HSA) fission 99Mo (F 99Mo), which is isolated after chemical separation. Challenging logistics are required to coordinate the currently limited 99Mo reactor production sites in several countries. Processing chemistry for F 99Mo is also complex and costly, and high levels of highly radioactive waste are generated. Realization of reliable, continued availability of 99mTc has become more urgent because of repeated unexpected shutdowns of the current very limited number of aging reactors that are used for F 99Mo production. Such repeated interruptions in 99mTc availability demonstrate that alternative production strategies to provide 99mTc on an international level must be critically evaluated.

The 99Mo shortage has been discussed in detail by the U.S. National Academy of Sciences and the Nuclear Science Advisory Committee of the Office of Nuclear Physics, U.S. Department of Energy (1). Canada has been a major supplier of F 99Mo, and a panel of experts recently summarized the causes of insufficient 99Mo inventories in the “Expert Review Panel on Medical Radioisotope Production” (2). An annex to the “Nuclear Technology Review 2010,” published by the International Atomic Energy Agency (IAEA), summarized global initiatives undertaken to address the F 99Mo shortage (3). A recent Google search for “molybdenum 99 shortage” resulted in more than a half million listings. The goal of this discussion is to review the expected relative benefits of alternative production and utilization of low-specific-activity (LSA) 99Mo on a broad scale to routinely provide 99mTc.

Alternative HSA 99Mo and Direct 99mTc Production Strategies

Any production strategy must carefully assess both practical and cost issues, as well as the time frames required before commercial distribution can be realized. Both initial capital and recurring costs must be evaluated, as well as costs associated with management and disposal of any long-lived radioactive waste. The current philosophy is that the per-dose price of 99mTc should reflect every cost involved in the entire cycle of operation, including waste management, because country cross-border subsidies are not expected to be provided in the future (2,4,5).

Key alternative scenarios currently being evaluated for HSA 99Mo and 99mTc production include the following technologies:

The aqueous homogeneous reactor (AHR). The AHR concept uses a critical assembly with a liquid 235U core. The fission-produced HSA F 99Mo is obtained by processing the core solution at frequent intervals (6). A recent partnership between Covidien and Babcock & Wilcox is exploring the feasibility of this technology for routine commercial production of F 99Mo (7).

Fission of 238U using linear accelerators. The use of high-power electron linear accelerators for photon fission of 238U targets has been widely discussed as another unique option for 99Mo production (8). This approach precludes any proliferation concern because of the proposed use of natural uranium. The economics of this approach were initially questioned in the Canadian Committee Report (2). This report suggested establishing 4 facilities with an estimated cost of ≥500 million CAN per facility. However, such a strategy would meet only the Canadian demand for 99Mo.

Direct cyclotron production of 99mTc. Cyclotron-based direct production of 99mTc is a feasible, attractive, and readily adaptable technology that offers an alternative for the large-scale production of clinical grade 99mTc (9,10). 99mTc can be produced by bombarding highly enriched 100Mo targets with intense proton beams with energies of 20–25 MeV. Many operating cyclotrons have proton beam currents (11) sufficiently high for production of several curies of 99mTc per cycle. The specific activity of 99mTc produced by the direct route is a concern that will require serious evaluation. Rapid decay of the short-lived 99mTc would be expected to limit distribution to local or perhaps regional areas.

The principal challenges of these proposed untested technologies include high capital investments, expected prolonged timelines before market introduction, and regulatory challenges.

99mTc from LSA 99Mo

Direct reactor production of LSA 99Mo by irradiation of enriched 98Mo has not yet been adequately addressed. Many research reactors that could be used for network production of LSA 98Mo are available worldwide, as summarized in the IAEA database (12), in contrast to the limited number of reactors currently used for production of HSA F 99Mo. A number of effective strategies are available for use of LSA 99Mo to obtain adequate specific
volume (i.e., concentration) of 99mTc for routine clinical use. Approximately 251 research reactors currently operate worldwide (12); of these, approximately 134 have sufficient thermal neutron flux, target volume, and operational capabilities for routine production of LSA 99Mo. Fifty of these research reactors have thermal neutron flux $>1 \times 10^{14}$ neutrons/cm2/sec, and the thermal flux of an additional 85 reactors ranges from $>1 \times 10^{12}$ to 1×10^{14} neutrons/cm2/sec. Seventy-eight of these reactors are already involved in radioisotope production, and these reactors have a good geographic distribution. Many of these reactors could be used for production of LSA 99Mo. Centrifuge technologies are readily available for the large-scale enrichment of 98Mo. The lower optimal thermal neutron flux limit required for production of 99Mo from irradiation of 98Mo depends on many factors, which include target volume requirements and the desired 99Mo product specific activity.

LSA 99Mo Production for 99mTc Clinical Use

Because the 98Mo activation cross section is low (0.13 barn), the LSA 99Mo produced is generally unsuitable for fabrication of the traditional alumina-based column-type generators (the molybdenum mass is too high). However, several effective methods are available that would allow use of LSA 99Mo to obtain clinical grade 99mTc. These include methyl ethyl ketone (MEK) extraction, postelution concentration of generator 99mTc eluates, and use of high-capacity adsorbents or gel-type generators.

MEK extraction of 99mTc from 99Mo solution. Use of MEK is a simple, established method to obtain 99mTc-per-technetate of high radiochemical and radionuclidic purity from LSA 99Mo (13). In the late 1960s, a New Drug Application for such use of MEK-extracted 99mTc. This method had been abandoned in developed countries with the introduction of F 99Mo and alumina-based column generator; however, it is still used in some developing regions. Reviving this technology could be an immediate step to help ameliorate future shortages of 99mTc.

Postelution concentration of 99mTc from alumina-based generators. Elution of the 99mTc bolus requires significantly greater amounts of alumina to adequately bind the LSA 99Mo, as well as higher saline volumes. Although the bolus 99mTc concentration (or specific volume, in millicuries per milliliter) is much lower and often too dilute for use with many “kits,” simple and effective postelution concentration technologies have been established that increase the 99mTc specific volume. These methods have already been widely demonstrated and automated for use in the clinical arena for concentration of 188Re from the analogous 188W/188Re generator (14, 15). These methods could be easily integrated with use of LSA 99mTc alumina generators and implemented for central radiopharmacy use.

New high-capacity adsorbents and “gel” type 99Mo/99mTc generators. A polyzirconium compound with high molybdenum adsorption capacity has been reported (16). Recent studies also described preparation of nano zirconia and titania particles with higher molybdenum binding capacities (17). In addition, a new synthetic alumina material with very high capacity (binding as much as 400 mg of tungsten per gram of adsorbent) (18) is now being evaluated for use in the 99Mo/99mTc system. Use of this material would make it possible to fabricate generators that have much higher molybdenum binding than the alumina used to bind LSA 99Mo prepared in a network of research reactors. In addition to use of the gel-type generator, another option of broad interest is conversion of irradiated LSA 99Mo directly into a gel form, such as zirconium molybate, and column loading of the processed gel (19, 20). However, fabrication of the gel-type generators with reproducible and predictable performance is challenging. Further research is required to evaluate this technology as a viable option.

Electrochemical-based 99Mo/99mTc generator system. Electrochemical systems for separation of 99mTc from LSA 99Mo solution have been developed (21). These systems involve a single electrolysis step using sodium molybdate solution and can be readily automated. Such a system would provide pharmaceutical quality 99mTc.

Regulatory approval of 99mTc as an approved pharmaceutical ingredient (API) obtained from any of these methods would, of course, be a prerequisite for clinical use. Automation of these systems would also be required.

Advantages of LSA 99Mo

The long-term availability of F 99Mo from the current limited and aging reactor network is of concern, and the potential production capabilities, costs, and regulatory issues associated with several proposed sophisticated new 99Mo and 99mTc production strategies are unknown. For these reasons, use of the existing large research reactor network should be reassessed for direct production of 99Mo via neutron activation of 98Mo—an attractive and proven alternative to the use of F 99Mo. Radiopharmaceutical use of systems utilizing LSA 99Mo is more complex, represents a new paradigm, and would depend on the availability of the systems as APIs. But the well-established expertise and capabilities of centralized radiopharmacies would represent an important foundation for implementation of the best of these technologies. Regional strategies for availability of 99mTc are important. What has worked best in developed countries and many world regions (i.e., F 99Mo) may require further careful assessment and may not be the best strategies to provide 99mTc in the vast regions of the developing world.

ACKNOWLEDGMENT

Research at the Oak Ridge National Laboratory is supported by the U.S. Department of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

(Continued on page 28N)
tor containing the hybrid pGB-CMVe promoter, the group was able to optically image T-cell effector function over time in response to tumor antigens in living mice. They concluded that this methodology “has the potential to accelerate the study of adoptive immunotherapy in preclinical cancer models.”

Cancer Research

REVIEWS

Review articles provide an important way to stay up to date on the latest topics and approaches and provide valuable summaries of pertinent literature. The Newsline editor recommends several reviews accessioned into the PubMed database in December. These include “Approaching MALDI molecular imaging for clinical proteomic research: current state and fields of application,” by Rauser et al. from the German Research Center for Environmental Health (Neuherberg, Germany) in the December issue of *Expert Review of Proteomics* (2010;7:927–941); “In vivo biodistribution of stem cells using molecular nuclear medicine imaging,” by Welling et al. from the Leiden University Medical Center (The Netherlands) on December 6 ahead of print in the *Journal of Cell Physiology*; “Nucleic acid aptamers for clinical diagnosis: cell detection and molecular imaging,” by Soontornworrarit and Wang from the University of Connecticut (Storrs) ahead of print in the December 15 issue of *Analytical and Bioanalytical Chemistry*; and “Current concepts and future directions in radioimmunotherapy,” by Lin and Iagaru in the December 1 issue of *Current Drug Discovery Technologies* (2010;7:253–262).

(continued from page 16N)

REFERENCES

Overcoming the 99mTc Shortage: Are Options Being Overlooked?
