Thyroid Stunning Revisited

In patients with thyroid carcinoma, remnant thyroid tissue or metastases may have lower 131I uptake on post-therapy images than on prior diagnostic images. This observation has led to the hypothesis that radiation effects from the diagnostic dose may impair the ability of the remnant tissue or metastases to concentrate iodine, a process referred to as stunning. Some have recommended that diagnostic 131I imaging doses should be limited to 74 MBq or less to decrease the likelihood of stunning. Others have recommended using 123I for diagnostic imaging. 123I has a low yield of conversion and Auger electrons, but it would not be expected to have a significant stunning effect.

Nearly everything about thyroid stunning has been controversial: whether it exists, whether there is a dose threshold, and whether it affects therapeutic outcome. There have been several recent reviews of the controversy (1–4). In this issue of The Journal of Nuclear Medicine, Sisson et al. (5) suggest that apparent stunning attributed to the diagnostic dose of 131I may instead be an early effect of the therapy dose. Does their report mean that possible stunning from diagnostic 131I doses, if it exists, can be ignored?

EVIDENCE FOR AND AGAINST STUNNING

There is good evidence that stunning can happen, at least in remnant thyroid tissue. Most of the controversy involves the likelihood of stunning at specific 131I doses and whether stunning causes any difference in therapeutic outcome.

A report 20 y ago by Jeevenram et al. (6) evaluated the effect of diagnostic radiiodine doses on subsequent uptake of 131I ablative doses in 52 patients. The study found that the higher the estimated radiation-absorbed dose from the diagnostic 131I, the greater the decrease in uptake of the therapy dose. No decrease in uptake was seen below an estimated radiation-absorbed dose of 17.5 Gy; however, there is considerable uncertainty in the radiation dose estimates. In a subset of 7 patients, 2 sequential 131I doses of 148–185 MBq resulted in reductions of 40%–70% on the second uptake measurement in 6 of the 7 patients.

A retrospective study by Park et al. (7) is often cited as evidence of stunning. In this report, diagnostic and posttherapeutic scans were compared in 40 patients with thyroid carcinoma. A diagnostic imaging dose of 111–370 MBq of 131I sodium iodide was used in 26 patients, and a dose of 11.1 MBq of 123I was used in the remaining 14 patients. All patients received a therapy dose of 3,700–7,400 MBq of 131I. The authors found a qualitative decrease in 131I uptake in remnant thyroid tissue or metastases on posttherapy images in 20 of the 26 patients (77%); 15 of 24 neck foci (63%) but only 1 of 11 distant metastases (9%) exhibited the finding. The frequency of stunning increased with higher 131I doses. No decrease in radioiodine uptake was found at any site in those who had received 123I.

Limitations of the study by Park et al. include its retrospective nature, absence of quantitative data, and little distinction between remnant thyroid tissue and metastases in the neck.

Some qualitative studies have failed to confirm the presence of stunning. Cholewinski et al. (8) found no evidence of stunning in 122 patients (105 with thyroid remnant only, and 17 with metastases); in this study, 185 MBq of 131I was used for imaging and 5,550 MBq for therapy. McDougall (9) studied 147 patients who received 74 MBq of 131I for imaging and 1,100–7,400 MBq for therapy; posttreatment scans showed lower uptake in only 2 patients (1.4%).

Quantitative studies have shown variable results. Leger et al. (10) measured 123I uptake in remnant thyroid tissue in 12 patients before a 185-MBq 131I imaging dose and again before a therapy dose several weeks later. The second uptake value was significantly lower (1.97% ± 0.71% vs. initial value of 3.76% ± 1.50%; P < 0.05). In contrast, Dorn et al. (11) did not find evidence of stunning after a 370-MBq 131I dose that was used for pretreatment dosimetry.

There is a model of impaired iodine transport at the cellular level after exposure of thyroid cells to 131I. Postgärd et al. (12) found that incubation with 131I inhibits transepithelial transport of 125I in cultured porcine thyroid cells and that the degree of inhibition is proportional to the radiation-absorbed dose.

CONTRIBUTION OF THE REPORT OF SISSON ET AL.

Quantitative 131I uptake was compared on diagnostic and posttherapeutic 131I scans at 48 h. Therapy doses were either 1,110 or 5,550 MBq of 131I in all patients. In one group of 70 patients, diagnostic doses were 18.5,
A major contribution of the report of Sisson et al. (5) is in calling attention to the possibility that many of the reported instances of stunning of thyroid remnants may represent effects of the therapy dose. It is likely that, at least in some cases, decreased retention of the 131I therapy dose may be a favorable sign of therapeutic effect rather than evidence of stunning by the diagnostic dose.

POSSIBLE STUNNING OF METASTASES

Some reports on stunning do not distinguish between remnant normal thyroid tissue and metastases, and the results are skewed by the preponderance of remnant tissue. 131I uptake in normal thyroid is almost always much greater than that in malignant thyroid tissue. Stunng of remnant tissue is plausible provided there is adequate 131I uptake and remnant tissue mass. Achieving sufficient 131I uptake in metastases to cause stunning is possible but much less likely. In one series of 83 cases of thyroid carcinoma in which 131I uptake was measured after tumor excision, the highest uptake was 0.6% of the administered dose per gram of tumor; in most others, the uptake was less by an order of magnitude or more (14).

The sensitivity of 131I imaging for metastases increases with increasing administered dose. Waxman et al. (15) showed greater sensitivity for a 370-MBq dose than for 74 MBq, and detection of metastases on a posttherapy scan but not the diagnostic scan is fairly common. Phantom studies (16) suggest that the sensitivity of 131I imaging for small, deep metastases is surprisingly low, and decreasing the administered dose in an attempt to avoid stunning may be counterproductive. High-dose 123I imaging is an alternative, albeit an expensive one, but there is not yet a consensus on optimum dose and imaging time.

CLINICAL IMPLICATIONS

The report of Sisson et al. (5) does not preclude the possibility that a diagnostic 131I dose may cause stunning of remnant thyroid, as the authors clearly note. There are several possible ways to minimize the likelihood of stunning before 131I ablation:

If the surgical history is known, and the ablative 131I dose is based on risk factors for residual or metastatic thyroid cancer, imaging may not be needed before ablation.

If imaging is considered necessary before ablation, as some have argued (9), use of 123I instead of 131I will avoid stunning.

If 131I imaging is performed before ablation, a 74-MBq dose is unlikely to cause significant stunning. A 185-MBq dose may cause stunning of remnant tissue, although satisfactory ablation is likely to be achieved anyway.

James M. Woolfenden
University of Arizona
Tucson, Arizona

REFERENCES

9. McDougall IR. 74 MBq radioiodine 131I does not prevent uptake of therapeutic doses of 131I (i.e. it does not cause stunning) in differentiated thyroid cancer. Nucl Med Commun. 1997;18:505–512.
10. Leger FA, Izembart M, Dagousset F. et al. Decreased uptake of therapeutic doses of iodine-131...


Thyroid Stunning Revisited

James M. Woolfenden


This article and updated information are available at:
http://jnm.snmjournals.org/content/47/9/1403

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml