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Mutual-information maximization is one of the most popular
algorithms for automatic image registration. However, many
implementation issues have not been evaluated in a single,
coherent context. Methods: Twenty-one registrations between
MR and SPECT brain images (8 patients) were achieved by
mutual-information maximization with different implementation
strategies. The results of a popular strategy were chosen as the
standard. All other results were compared with the standard,
and the statistics of misregistrations were computed. The reg-
istration speed, accuracy, precision, and success rate were
assessed. Results: Compared with trilinear interpolation, near-
est-neighbor interpolation slightly sped the registration process,
but with a lower success rate. The number of bins used to
estimate the probability density function (pdf) affects the speed
and robustness. Using fewer bins yielded a less robust regis-
tration. Adaptively changing the number of bins increased the
registration speed and robustness. Simplex optimization in-
creased the registration speed considerably, with a slightly de-
graded success rate. Simplex optimization with adaptive bin
strategy improved the success rate and further decreased the
registration time. Multiresolution optimization yielded a better
success rate, with little effect on the accuracy and precision of
registration. An increase in the number of resolution levels in-
creased the success rate. Multisampling optimization also im-
proved the success rate, but the results were less accurate and
precise than those obtained with multiresolution optimization,
with an increase in the number of levels decreasing the per-
formance. Segmentation affected the registration speed and
success rate. Because segmentation is problem specific, the
effects were not conclusive. Conclusion: Different implemen-
tation strategies considerably affect the performance of auto-
matic image registration by mutual-information maximization.
On the basis of the experimental findings, we suggest that the
best implementation strategy would include trilinear interpola-
tion, adaptive change of the number of bins when estimating
pdf, and exploitation of a simplex optimization algorithm with a
multiresolution scheme.
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Image registration and fusion of medical images are in-
creasingly useful in research and patient care (1–3). Accu-
rately associating data points on different images is required
for diagnosis, treatment planning, and detection of changes.
Many registration methodologies have been developed, re-
viewed (4), and evaluated (5–7).

From a practical point of view, automatic registration is
desirable because its results are objective and because quan-
titative analysis is possible. Among the various automatic
registration methods, maximization of mutual information
of voxel intensities (8,9) is one of the most popular for
multi- as well as single-modality image registration. The
method is robust and accurate and does not require segmen-
tation and preprocessing (5–7).

Mutual information is an information-theoretic concept.
It quantifies the similarity between 2 random variables A
and B and is defined by:

I�A, B� � �� pAB�a, b� log
pAB�a, b�

pA�a�pB�b�
,

where pAB(a, b) is the joint probability density function
(pdf) and pA(a) and pB(b) are the marginal pdf’s. In the
context of image registration, random variable A is the
voxel value in the reference image and random variable B is
the voxel value in the floating image. A general flowchart of
the implementation of mutual-information registration is
given in Figure 1, where I1 and I2 are reference and floating
images respectively. When the registration parameters are
applied to the floating image, interpolation is generally
needed such that the voxels are mapped to grid points. To
compute the mutual information, one needs to estimate the
pdf. To decide if a registration is optimal and, if it is not,
how to update the registration parameters, one needs to use
some optimization scheme.

Many implementation issues are involved in mutual-
information image registration, such as interpolation meth-
ods, estimation of marginal and joint pdf’s, optimization
algorithms, multiresolution and multisampling schemes,
and segmentation options. Although the reports (8–13)
dealing with mutual-information registration discuss some
aspects of these issues, not all of these parameters have been
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evaluated in a single, coherent context. This study evaluated
the use of different implementation strategies on 21 MR and
SPECT brain image registrations, and we determined the
best implementation strategy.

MATERIALS AND METHODS

Images
This study involved 8 patients who underwent brain MRI and

nuclear transmission and emission scanning. The pertinent infor-
mation on image files is in Table 1. The emission images using
201Tl were excluded from this study because of their poor read-
ability. Thus, 21 image pairs were available to be registered. All
nuclear images were registered to their MRI counterparts.

Image Registration
All image pairs were registered by mutual-information maxi-

mization. We did not try to hand-register the images first. The
source code of commercial software (Image Volume Registration;
Philips Medical Systems, Cleveland, OH) was used as the base and
was modified to incorporate different implementation strategies.
The computer used was an AlphaStation (Digital Equipment
Corp., Maynard, MA) with 192 MB of memory. The operating
system was UNIX (version 4.0D; Digital).

All registration transformations were restricted to the rigid-body
type. The registration parameter is a 6-dimensional vector, (�x, �y,

�z, tx, ty, tz), where �x, �y, and �z are rotation angles in degrees
around the x-, y-, and z-axes, respectively, and tx, ty, and tz are
translation offsets in millimeters along the x-, y-, and z-axes,
respectively.

Interpolation
When the registration transform was applied to the nuclear

image, the original grid in the nuclear images was transformed to

a generalized nongrid coordinate system. The registration process
needed to access the voxel values at grids of the transformed
image. Thus, interpolation had to be used.

There are different interpolation methods. Those most popular
are nearest neighbor and trilinear. Maes et al. (9) reported a
trilinear partial-volume distribution method that is not an interpo-
lation per se. In this study, we used nearest-neighbor and trilinear
interpolations and compared their impact on registration.

Histogram
To compute the mutual information, one must have the marginal

and joint pdf’s of voxel values and their pairs. Two methods of
estimating those pdf’s have been published. Wells et al. (8) used a
Parzen windowing method, which is time consuming. Maes et al.
(9) used a histogram method, which is popular and used by many
others (8–13). Because the latter approach is quick and easy to
implement, we adopted it for this study.

To estimate the histograms, one maps the voxel values to an
array or a sequence of bins. The number of bins is an important
parameter. In our study, we used the same number of bins, n, for
both images when estimating the marginal pdf’s and used n � n
when estimating the joint pdf. Values tested for n were 16, 32, and
64. The voxel values were linearly mapped to bins. Nonlinear
mapping was not tried.

Multiresolution and multisampling optimization was used to
avoid local minima. Suppose the image size is 16 � 16 � 16.
There then are, at most, 16 � 16 � 16 gray-value pairs (when all
voxels overlap). If 64 � 64 bins are used to estimate the joint pdf,
then on average, there is only 1 voxel pair per bin. As a result, the
statistical error in the joint pdf estimation would render the result
meaningless. Thus, a small number of bins is desirable. As the
following results show, however, a small number of bins can yield
less robust registration, implying that a large number of bins is

FIGURE 1. Flow chart of image registra-
tion by mutual-information maximization.
I1 � reference image; I2 � floating image;
I*2 � transformed floating image; N � no;
T � registration transformation; Y � yes.
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required. To solve this paradox, we adaptively changed the number
of bins. The number of bins was heuristically set to the value of the
resolution; that is, if the resolution is 32, the number of bins is 32
(and 32 � 32 for the joint pdf). We did not try to optimize the
number of bins at each resolution.

Optimization
The optimal registration is found by an iterative process, and

iterative optimization is an important part of a registration method.
Different optimization algorithms have been used previously:
Powell, simplex, steepest decent, conjugate gradient, quasi-
Newton, Levenberg-Marquardt least squares, and simulated an-
nealing, among others (8–14). Because Powell and simplex are the
most frequently used algorithms in this context, we evaluated only
these. In the simplex algorithm, a simplex in hyperspace is de-
formed in a well-defined manner to enclose the minima (14). The
Powell algorithm, a direction-set method in multidimensions,
loops on a set of directions and finds the minima along each
direction. Brent’s method in 1-dimensional search was used in our

implementation (14). The direction matrix was initialized to a
unitary matrix, consisting of the vector (�x, �y, �z, tx, ty, tz). The
order of these parameters was fixed, and the termination condition
for both algorithms was the same (tolerance � 0.001).

Multiresolution and Subsampling
Optimization methods cannot guarantee that a global optimal

value will be found. The value can easily be trapped to a local
minimum. To find a true global optimal value, simulated annealing
or genetic algorithms can be applied. The speed of these algo-
rithms limits their application to 3-dimensional image registration.
In practice, an approach using multiresolution and subsampling
proves to be helpful (10).

In both multiresolution and subsampling, the idea is to register
the coarse images first and then to use the result as the starting
point for fine-image registration. For multiresolution, the coarse
image is obtained by averaging the voxels in the sampled neigh-
borhood. For subsampling, the coarse image is obtained simply by
sampling the original input image.

TABLE 1
Image File Description

Patient Modality Image Dimension Voxel (mm3)
Emission
isotope Comments

A MR Sag 2562 � 128 1.02 � 1.5 — M, 29 y old
Tx Axi 642 � 29 7.123 99mTc
E Axi 642 � 29 7.123 99mTc

B MR Sag 2562 � 128 1.02 � 1.5 — M, 21 y old
Tx Axi 642 � 24 7.123 201Tl
E Axi 642 � 24 7.123 201Tl Not used
Tx Axi 642 � 24 7.123 99mTc
E Axi 642 � 24 7.123 99mTc

C MR Sag 2562 � 128 1.02 � 1.5 — F, 70 y old
Tx Axi 642 � 22 7.123 99mTc
E Axi 642 � 29 7.123 99mTc

D MR Axi 192 � 256 � 24 1.172 � 6.0 — M, 45 y old
Tx Axi 642 � 24 6.232 � 7.12 201Tl
E Axi 642 � 34 6.232 � 7.12 201Tl Not used
Tx Axi 642 � 31 6.232 � 7.12 99mTc
E Axi 642 � 31 6.232 � 7.12 99mTc

E MR Sag 1802 � 120 1.412 � 1.5 — M, 40 y old
Tx Axi 642 � 32 6.232 � 7.12 201Tl
E Axi 642 � 32 6.232 � 7.12 201Tl Not used
Tx Axi 642 � 26 6.232 � 7.12 99mTc
E Axi 642 � 26 6.232 � 7.12 99mTc

F MR Axi 2562 � 124 0.942 � 1.0 — M, 51 y old
E Axi 642 � 47 3.503 99mTc Before Diamox
E Axi 642 � 45 3.503 99mTc After Diamox

G MR Sag 192 � 256 � 120 1.412 � 1.5 — M, 60 y old
Tx Axi 642 � 49 3.503 201Tl
E Axi 642 � 49 3.503 201Tl Not used
Tx Axi 642 � 53 3.503 99mTc
E Axi 642 � 53 3.503 99mTc

H MR Sag 192 � 256 � 120 1.412 � 1.5 — M, 13 y old
Tx Axi 642 � 32 6.232 � 7.12 201Tl
E Axi 642 � 32 6.232 � 7.12 201Tl Not used
Tx Axi 642 � 28 6.232 � 7.12 99mTc
E Axi 642 � 28 6.232 � 7.12 99mTc

Tx � transmission scan; Sag � sagittal slices; Axi � axial slices; E � emission scan.
All SPECT scanners were PRISM 3000XP (Philips Medical Systems, Cleveland, OH). All MR scanners were Outlook (Philips Medical Systems).
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The number of levels (i.e., the number of resolutions or sub-
samplings) in multiresolution and subsampling and the resolutions
or sampling frequencies in each level can influence the registration
performance. In this study, we fixed the sizes of images at 8 � 8 �
8, 16 � 16 � 16, 32 � 32 � 32, or 64 � 64 � 64 for both
multiresolution and subsampling. When the number of levels was
4, images of all above-mentioned sizes were used, from coarse
images to fine images. When the number of levels was 3, 2, or 1,
only the latter 3 finer images, 2 finer images, or 1 finer image,
respectively, was considered.

Analysis of Registration Results
For these retrospective registrations, the ground truths are un-

known and we cannot assess the absolute accuracy of different
implementation strategies. To assess the influence of implementa-
tion parameters on registration results and compare the registration
performance under different conditions, we established an artificial
standard. We defined a standard implementation as one that uses
trilinear interpolation, a fixed histogram bin (64 � 64) to estimate
the marginal as well as joint histogram, and the Powell optimiza-
tion algorithm, with a multiresolution strategy (resolutions change
from 8 to 16 to 32 to 64). This implementation is typical of those
used by other researchers (except that we used more levels of
resolution) (10).

The misregistration parameter was defined as the difference
between the registration parameter and the standard. A study has
shown that a trained clinician can detect differences from the
registration parameter of 4° in the x- and y-rotation angles, 2° in
the z-rotation angle, 2 mm in the x- and y-translations, and 3 mm
in the z-translation (10). If all misregistration parameters were
within these detection thresholds, the registration was regarded as
a success. If any misregistration parameter was outside this detec-
tion threshold, the registration results were visually assessed, be-
cause if the standard registration parameter is on the borderline of
a failed registration and the current registration is on the opposite
borderline, the difference between them can be as large as twice
the detection threshold. If the visual inspection identified the
registration as being good, it was treated as a success.

The mean and SD of the misregistration parameters of success-
ful registrations were then calculated. If the mean was close to
zero, the result was regarded as accurate. If the SD was small, the
result was regarded as precise. A robust implementation gave an
accurate and precise registration with a high success rate.

The accuracy of registration can also be evaluated by the
absolute position error of selected regions or points. This error is
known to comprise the error in translation offsets and the error
caused by rotation angles (5). Thus, we did not report the absolute
position error for this study.

The average run time of each implementation was compared
with the standard implementation. If the other implementation ran
faster than the standard, we defined a speedup as:

speedup �
standard run time � run time

run time
� 100%;

otherwise, we defined a slowdown as:

slowdown �
run time � standard run time

standard run time
� 100%.

RESULTS

Standard Implementation
The standard implementation achieved 20 successful reg-

istrations (95%) as judged by visual inspection, with an
average run time of 170 s. A typical registration is shown in
Figure 2. The angle parameter ranged from �24° to 0°, and
the translation parameter ranged from �12 to 54 mm. We
replaced the failed registration with the registrations given
by the adaptive bin scheme that was judged to be successful
by visual inspection. As the following results show, the
adaptive bin scheme gave registrations very close to those
of the standard, in terms of the extent of the difference and
the SD of the difference. If the failed registration had been
a success, the registration results would have been close to
those given by the adaptive bin scheme. Thus, this replace-
ment did not have an adverse effect on our evaluations; that
is, what was replaced was reliable.

The registration achieved through mutual-information
image registration has been reported to have a subvoxel
accuracy (5). Visual inspection of the results of standard
registration was satisfactory. The results of this standard
implementation were also consistent when different initial
registrations were introduced. Thus, we assume that the
standard registration is close to the unknown truth.

Interpolation
To evaluate the effects of nearest-neighbor interpolation,

we used that interpolation and kept all other implementation
parameters the same as for the standard implementation.
The results showed that this implementation failed to reg-
ister 5 image pairs, with a success rate of only 76%. The
mean and SD of misregistration parameters are shown in
Table 2. The average run time for this implementation was
161 s, which amounts to a speedup of 6%.

Comparing the data in Table 2 with those in Tables 3–6,
we find that the implementation using nearest-neighbor
interpolation has a large SD. It is generally believed that
nearest-neighbor interpolation can speed up the registration
because less computation is involved in the interpolation.
Our data do not support this belief. It is true that each
iteration cycle takes less time if nearest-neighbor interpolation
is used, but the registration time is determined by the number
of iterations and the time per iteration. The implementation
using nearest-neighbor interpolation is likely to take more
iterations. Because the nearest-neighbor interpolation is insen-
sitive up to 1 voxel, there was concern that subvoxel registra-
tion accuracy could not be achieved. Our data indicate that
although this implementation yields a result with a large SD,
the registration result, compared with that obtained using the
standard implementation, still achieved subvoxel accuracy (the
error from translation offsets was 1.24 mm on average).

Bin Size
In the standard implementation, we changed the number

of bins to 16 � 16 and 32 � 32. The number of bins was
also changed adaptively. The statistics of that implementa-
tion are tabulated in Table 3.
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When the number of bins was small, less computation
was involved. However, this did not necessarily speed up
registration, as the data in Table 3 reveal. When the bin was
16 � 16, the registration slowed by 5%, from 170 to 178 s.
When the bin was 32 � 32, the speed improved by 11%. The
success rate for the latter case was reduced. When the number
of bins was adaptively changed, the speedup was 13%.

When the number of bins was smaller, the mean and SD
of the misregistration parameters were larger, indicating
that a smaller number of bins may degrade registration
accuracy and precision. The adaptive scheme registered all
image pairs better than did the standard implementation,
and the results were accurate and precise.

Optimization Algorithm
The Powell direction-set method and the simplex down-

hill method were the optimization algorithms used for com-
parison, and the results are shown in Table 4. The result of
simplex optimization with a fixed number of bins was close

to that of the standard but failed to register 2 image pairs.
The speedup was 91%.

When we added the adaptive bin scheme to simplex
optimization, all image pairs were successfully registered,
and the registration speed was improved further (speedup,
110%). However, the mean and SD of ��x and �ty increased.
The misregistrations of the 2 cases that failed by the sim-
plex-only method were large. Nevertheless, the registration
quality was good by visual inspection.

Multiresolution and Subsampling Strategy
The implementation using different levels of resolution or

sampling were studied, and the statistics of the misregistra-
tion parameters are reported in Table 5. For multiresolution,
when the number of resolution levels was small, the success
rate decreased and the processing time increased. However,
accuracy and precision were practically independent of the
number of levels. The registration speed was related to the
number of levels. The registration slowdowns were 32%,

FIGURE 2. Typical result for registration
of MR and SPECT images. Transverse and
coronal views of MR images are displayed
on left, and those of SPECT images are on
right.

TABLE 2
Mean and SD of Misregistration Parameters of Implementation Using Nearest-Neighbor Interpolation

Misregistration parameter

Time (s) Success rate (%)��x (deg) ��y (deg) ��z (deg) �tx (mm) �ty (mm) �tz (mm)

0.66 � 1.32 �0.25 � 0.53 �0.33 � 1.14 �0.14 � 0.49 �0.29 � 1.00 1.20 � 1.26 161 76
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TABLE 3
Mean and SD of Misregistration Parameters of Implementation Using Different Number of Bins

No.
of

bins

Misregistration parameter

Time (s) Success rate (%)��x (deg) ��y (deg) ��z (deg) �tx (mm) �ty (mm) �tz (mm)

16 �0.33 � 2.00 0.21 � 0.99 0.00 � 0.98 0.15 � 0.47 0.50 � 1.58 1.43 � 1.52 178 95
32 0.22 � 0.97 0.30 � 0.81 �0.07 � 0.57 0.23 � 0.41 �0.17 � 0.65 0.54 � 0.80 153 90
AD 0.12 � 0.65 0.07 � 0.58 �0.23 � 0.62 0.04 � 0.35 �0.08 � 0.58 0.24 � 0.42 150 100

AD � adaptive bin.

TABLE 4
Mean and SD of Misregistration Parameters of Implementation Using Simplex Optimization

Al

Misregistration parameter

Time (s) Success rate (%)��x (deg) ��y (deg) ��z (deg) �tx (mm) �ty (mm) �tz (mm)

SF �0.23 � 0.58 0.27 � 0.71 �0.01 � 0.70 0.10 � 0.34 0.24 � 0.35 �0.20 � 0.46 89 90
SA �1.02 � 1.99 0.03 � 0.75 �0.07 � 0.67 �0.07 � 0.38 0.62 � 1.18 �0.09 � 0.46 81 100

Al � algorithm; SF � simplex with fixed number of bins; SA � simplex with adaptive number of bins.

TABLE 5
Mean and SD of Misregistration Parameters of Implementation Using Different Levels of Resolution and Sampling

Level

Misregistration parameter

Time (s) Success rate (%)��x (deg) ��y (deg) ��z (deg) �tx (mm) �ty (mm) �tz (mm)

R1 �0.36 � 0.99 �0.04 � 0.52 0.12 � 0.69 �0.08 � 0.27 0.26 � 0.60 0.06 � 0.26 225 62
R2 0.13 � 0.54 0.32 � 0.67 0.10 � 0.54 0.12 � 0.38 �0.06 � 0.35 �0.07 � 0.55 186 86
R3 0.26 � 0.80 0.08 � 0.55 0.03 � 0.74 0.16 � 0.39 �0.07 � 0.48 0.11 � 0.55 181 95
S1 0.06 � 0.74 0.03 � 0.72 �0.25 � 0.81 0.59 � 0.65 1.18 � 0.46 �1.79 � 1.26 216 86
S2 0.25 � 0.94 0.38 � 0.86 0.11 � 0.68 0.71 � 0.69 1.11 � 0.80 �1.91 � 1.18 197 95
S3 �0.08 � 0.79 0.19 � 0.67 0.01 � 0.66 0.59 � 0.63 1.32 � 0.65 �1.91 � 0.96 211 86
S4 0.49 � 0.86 0.32 � 0.90 0.18 � 0.81 0.61 � 0.71 0.90 � 0.46 �2.09 � 1.00 215 86

R1–R3 � multiresolution technique with 1, 2, or 3 resolution levels; S1–S4 � subsampling technique with 1, 2, 3, or 4 subsampling levels.

TABLE 6
Mean and SD of Misregistration Parameters of Implementation Using Segmentation

Segment

Misregistration parameter

Time (s) Success rate (%)��x (deg) ��y (deg) ��z (deg) �tx (mm) �ty (mm) �tz (mm)

L2 �0.01 � 0.93 0.29 � 0.92 �0.04 � 0.54 0.08 � 0.60 0.01 � 0.78 0.03 � 0.49 187 95
L5 0.12 � 1.11 �0.08 � 0.70 0.04 � 0.72 0.00 � 0.51 0.08 � 0.93 0.54 � 0.58 165 100
L10 �0.45 � 1.48 0.10 � 0.85 0.05 � 0.97 0.08 � 0.49 0.49 � 0.81 0.72 � 1.28 201 81
H80 �0.19 � 0.88 0.10 � 0.67 0.01 � 0.70 0.07 � 0.33 0.12 � 0.55 0.03 � 0.42 178 95
H90 0.22 � 0.97 0.38 � 0.89 0.09 � 0.56 0.17 � 0.48 �0.31 � 0.88 0.03 � 0.52 178 95

L2, L5, and L10 � clamping of voxels whose values are 	2%, 	5%, and 	10%, respectively, of highest voxel value; H80 and H90 �
clamping of voxels whose values are 
80% and 
90%, respectively, of highest voxel value.
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9%, and 6% for 1, 2, and 3 levels, respectively. The standard
implementation (with 4 levels) was the fastest.

For subsampling, the success rate was maximized when
the number of sampling frequencies (subsampling levels) was
2. Further increasing the number of sampling frequencies did
not improve the success rate. In fact, the success rate decreased
when the number of sampling frequencies was 3 and 4, prob-
ably because the interdependency among neighboring voxels
decreased. The means and SDs of �ty and �tz were large,
indicating that the subsampling strategy was not accurate and
precise and thus was not ideal. The registration slowdowns
were 27%, 16%, 24%, and 26% for 1, 2, 3, and 4 sampling
frequencies, respectively. On average, the multiresolution ap-
proach was faster than the subsampling approach.

The multiresolution and subsampling registrations were
not identical for 1 resolution level and 1 subsampling level.
This occurs because the voxels in the high-resolution MR
image are averaged in the multiresolution technique but are
directly sampled in the subsampling technique. The nuclear
image in either case was the same.

In the multiresolution registration, the neighboring voxels
were averaged. Averaging was slower than pure sampling
but helped the overall registration performance.

Segmentation Effects
A meaningful segmentation may depend on the image

content and the properties of the voxel-value histograms
(13). A fixed segmentation of this kind would not be appli-
cable to all images. Nevertheless, our segmentation was
based on the percentile of voxel values. If the voxel value
was less than some percentage of the maximum voxel value
(background noise, for example), it was clamped. If the
voxel value was larger than some percentage of the maxi-
mum voxel value (hot spots in SPECT and PET, for in-
stance), it was clamped. We clamped only 1 end, although
low-end and high-end clamping can be applied simulta-
neously.

The statistics of misregistration parameters are shown in
Table 6. The data reveal that clamping the low-end voxels
had a more dramatic effect on the registration performance.
For example, when we clamped voxels whose values were
	10% of the highest voxel value, the success rate was
reduced. For 	5% and 	10% low-end clamping, the SDs
of some registration parameters increased, indicating that
different parameters have different sensitivities to low-end
clamping. Clamping the high-end voxels had almost no
effect on the registration performance (if more voxels had
been clamped, the performance would have been degraded).
The difference in the influence of low-end and high-end
voxels was caused by the difference in the population of
low-end and high-end voxels.

CONCLUSION

The performance of mutual-information maximization
for registration of MR and SPECT brain images has been
evaluated using different implementation strategies, includ-

ing interpolation methods, histogram bin strategies, optimi-
zation algorithms, multiresolution or subsampling schemes,
and segmentation options. Our results indicate that different
implementation strategies have a disparate performance in
terms of speed, accuracy, precision, and success rate. On the
basis of this study, we suggest that the best implementation
will use trilinear interpolation, adaptively changing the
number of bins when estimating pdf, using the simplex
optimization algorithm, and exploiting a multiresolution
strategy with as many levels as possible. Segmentation can
be combined with the registration process, which has to be
problem specific. Although this recommendation is based
on the study of MR and SPECT images, we hope it will also
be applicable to the registration of images from other mo-
dalities.
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