
sychophysical studies with human observers are a stan
dard means of making objective assessments of detection
performance in medical imaging. However, a credible
demonstration that some method of data acquisition or
image processing is an improvement over another often
requires an extensive series of time- and patience-consum
ing studies. Mathematic â€œmodelâ€•observers that correlate
with humans for clinically realistic tasks are being consid
ered to expedite such studies (1).

A model observer is an equation that accepts a multivari
ate input (the image) and returns a scalar value (the test
statistic) for comparison with a threshold value. This equa
tion is defined by the statistical properties of the image,
characteristics of the lesion, anatomic background, and
system noise, which also largely determine the detection
task difficulty for human observers.

Current research on model observers as predictors of
human performance has centered on linear observers, which
incorporate linear functions of the image pixel values. The
channelized Hotelling observer (CHO) is a linear observer
with the outstanding feature of a bank of band-pass prefilters
that extracts a small number of image details. This number is
much smaller than the number of image pixels and has a
physiologic basis in the frequency-selective channels of the
human visual system (2). The CHO has been shown to agree
with humans for a variety of â€œsignal-known-exactlyâ€•(SKE)
detection tasks, for which the observer is told the tumor
location and the only decision to be made for a given image
is whether the tumor is actually present. Initial studies were
of SKE-â€•background-known-exactlyâ€• (SKE-BKE) tasks,
with images of signals embedded in filtered white noise (3).
More realistic studies investigated SKE tasks with random,
heterogeneous (â€œlumpyâ€•)backgrounds (SKE-RB) (4). The
CHO has also correlated with human performance for
ranking maximimum-likelihood expectation-maximization
reconstructions as a function of iteration stopping point
for both SKE-BKE and SKE-RB tasks (5). More re
cently, Burgess et al. (6) considered signal detection in
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images with quantified mixes of noise and slower-varying
â€œstructuralbackground,â€• and Eckstein et al. (7) studied
lesion detection in actual clinical backgrounds with superim
posed white noise.

For this study, we have investigated correlations between
CHO and human performances for a detection task with
simulated SPECT images, considering detection of â€œhotâ€•
tumors at known locations within the liver when varying the
amount of scatter and applying scatter correction. Although
the receiver operating characteristic (ROC) studies were of
SKE-BKE format, the data acquisition and image processing
were otherwise intended to approximate clinical conditions
(8). Our goal was to develop a model observer sufficiently

capable of predicting human performance in similar tasks to
facilitate psychophysical experiments that are under way at
our laboratory.

MATERIALS AND METhODS

Simulation Models
The ROC study used simulated images of the biodistribution of

F023C5 anticarcinoembryonic antigen antibodies labeled with
@â€˜@â€˜Tc(9). The SPECT imaging system was modeled on a Prism

3000 (Picker International, Inc., Cleveland, OH) with low-energy,
ultra-high-resolution, parallel-hole collimators, a circular radius of
rotation of 21.5 cm, and an energy resolution of 9.4% full width at
half maximum at 140 keV.A 20% photopeak window centered on
140 keV was subdivided into 15% upper and 5% lower windows
for scatter-compensation purposes.

Projection data consisted of 128 X 128 images with a pixel
width of 0.36 cm. The counts were obtained with the SIMIND
Monte Carlo software (10), which permitted classification of the
detected photons as either primary or scattered. The data were
synthesized in 2 steps. Projections of the background antibody
distribution were obtained from the Zubal anthropomorphic phan
tom (11). Projection sets of a 2.5-cm-diameter spherical tumor
within the liver were simulated separately. Separate ROC studies
were performed for each of 3 tumor sites, with the intention of
exploring a range of task difficulties for the observers. These
locations were determined on the basis of a preliminary ROC study
(8). For each location, the tumor projections were scaled to produce
a tumor-to-liver contrast ratio of 13% and then added to the
projections of the background distribution to form tumor-present
datasets. Independent Poisson noise realizations of a desired count
level were then created.

Scatter-Correction StrategIes
Scatter in SPECT data is attributed to photons whose points of

emission are not consistent with the spatial information recorded
by the detector. Scatter adds a low-frequency component to the
data, with the dual effect oflowering both the relative magnitude of
the Poisson noise and the contrast in the reconstructed images (12).

Scatter-correction algorithms are designed to improve image
contrast, but do so at a cost of increased noise correlation and
magnitude in the images. The dual-photopeak window (DPW)
method is a subtraction method of scatter compensation that is
representative of the class of subtraction scatter-correction meth
ods.DPWestimatesthescatter-to-totalphotoncountratio R,@ of

the projection images on a pixel-by-pixel basis from the power-law
expression:

Rscaner a@ + c, Eq.l

where R10@is the ratio of the counts in the lower subwindow to the
counts in the total photopeak window, and a, b, and c are
coefficients determined through system calibration (13,14). The
result is a noisy estimate of the scatter, which must be low-pass
filtered before subtraction from the projection data. This filtering
increases spatial correlations in the projections.

For each of the 3 tumor locations, 5 datasets were created by
applying the following scatter-compensation strategies: (a) Pri
mary: The ideal of perfect scatter rejection, implemented by
considering only the primary photons in the data. This represents
the best-case performance for scatter subtraction. Primary datasets
consisted of 8.77 x l0@counts. (b) Scatter: A no-correction
strategy, using the primary plus scattered photons with a scauer-to
primary count ratio or scatter fraction (SF) ranging from 0.4 to 0.5.
This SF is typical for @â€œTc.A scatter dataset consisted of 12.5 X
lO@counts. (c) High-scatter: A no-correction strategy, using data
with SFs raised to between 1.0 and 1.2. This simulated imaging
with a radionuclide that produces elevated levels of scatter. In both
no-correction strategies, the number of primary counts was held
constant. For a high-scatter dataset, 21.82 X lO@counts were used.
(d) DPW: DPW correction applied to the scatter dataset.
(e) High-DPW: DPW correction applied to the high-scatter dataset.
We refer to the primary, scatter, and high-scatter strategies as the
non-DPW strategies, and to the DPW and high-DPW strategies as
the DPW strategies.

Image Reconstruction
The 2-dimensional slices through the tumor centers were chosen

for filtered backprojection reconstruction with a ramp filter. We
applied 2-dimensional, fourth-order Butterworth prefiltering with a
cutoff frequency of 0.25/cm to each dataset as apodization for the
ramp filter (8). Postprocessing included multiplicative Chang
attenuation correction (15) using a uniform attenuation map based
on an elliptical approximation to the body outline, along with the
zeroing of negative pixel values. The 128 X 128 images were
bilinearly interpolated to 384 X 384 and then cropped to the central
256 X 256 pixels (0.12-cm pixel width). As a final step, gray-scale
mapping was used that scaled the mean liver pixel value to mid
gray-scale level. The tumor placements within the liver, numbered
1, 2, and 3, are shown in the noise-free images of Figure 1.

Human ROC Studies
For each locationâ€”strategycombination, a set of 20 training

images and a set of 80 study images were prepared. Both sets were
equally divided between tumor-present and tumor-absent images.
Images from all 3 locations were then combined to produce a
training set of 60 images and a study set of 240 images for each
strategy. These were read by each observer in 2 separate sessions
featuring 30 training images and 120 study images. With 5
strategies, the ROC study thus consisted of 10 such sessions. For
each observer, the sessions were scheduled in a different, nonran
dom order. The reading order of the images within a session was
randomized for each observer. Seven members of the medical
physics research group at the University of Massachusetts Medical
School participated as observers.

An observer'sperformancefor aparticularlocationandstrategy
was computed as an area under the ROC curve, A@(16). Overall
human performance as a function of location and strategy was
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location 1 Iocct@on 2 Iocc@on 3

FIGURE1. Innoise-freeimages,arrowsindicatetumorlocations(1, 2, and3, lefttoright).ROCstudywasrunforeachlocation.

measured as the average area A@among observers. For comparison
with the model observers, a signal-to-noise ratio (SNR) was
determined for each A@by the relation (17):

5@hunsan 2erf@ (2A7 â€”1),

where erf@ (@)denotes the inverse of the error function:

2@ 2
erf(x)=7@f et dt.

Model Observers
A model observer is a mathematic equation that computes a

scalar test statistic on the basis of the pixel values of an image and
renders a decision by comparing the statistic to a threshold value
xc. Assume that vector I has as elements f the pixel values of an
arbitrary 256 X 256 image in the ROC study. A linear model
observer computes the statistic X(f)from the formula:

2562

J=1

where w@is the importance the observer assigns to the jrâ€•pixel
value. Equation 4 can also be viewed as the scalar product wtf of
the image and an observer template image w with w@as the j@pixel
value. The term w@represents the transpose of w.

The SKE-BKE task for a single tumor location describes a
binary hypothesis test for which we assume that f is drawn at
random from either a lesion-absent ensemble of images H@or a
lesion-present ensemble H1. (The probability p(H1) that f comes
from the ith ensemble is fixed by the task definition. Our study
images were evenly divided between lesion-present and lesion
absent, so p(Ho) and p(H1) were both 0.5.) If X(f) exceeds the
decision threshold X@,H1 is selected. Otherwise, the choice is H@.
The function notation X(f) emphasizes that the test statistic is
dependent on the particular test image and is therefore a random
variable. Assume that p(X@H1)is the conditional probability
distribution of X(f) for the@ ensemble. For the model observer to
be effective, the separation between the distributions p(X@Ho)and
p(X1H1)shouldinsomesensebelarge.Whenthisisthecase,X@can
be set so that the number of incorrect decisions will be small (Fig.
2). One measure of this separation is the SNR (18):

SNR = [(A)1â€”(x)@12 1@2

p(H1)var (X)1+ p(H0)var (X)0

where (K)1and var(X)1are the conditional mean and variance,
respectively, of Kfor f E H1.

CHO Models
As implied in our description of model observers, an observer

template for the scalar product of equation 4 is determined by the
2 statistical properties of the ensembles H@and H1. We let f1be the

Eq. statisticalmeanimageofensembleH, andtakeK1to bethe2562X
2562noise covariance matrix for H,, as defined by the equation:

K@= (Efâ€”i@][fâ€”f]t)@EH E@.6

The notation (.)@, indicates an average over the images in H1.
The CHO is related to a pair of well-known linear discriminants

from signal detection theory. One of these, the nonprewbitening
(NPW) observer, performs tumor detection by adopting the mean
reconstructed tumor:

wflPW=@fIâ€”@@), Eq.7

asan observertemplate(18). This is the optimal observer(in the
sense of maximizing the SNR of equation 5) for SKE-BKE tasks

c 4 when the images have uncorrelated Gaussian noise.

@ Anotherstandardobserveris theprewhitening(PW)matched
filter observer, which precedes the matched filter step with a
prewhitening operation. Prewhitening seeks to decorrelate noise in
an image through a multiplication by the inverse of the noise
covariance matrix (18). The PW template is:

@ Eq.8

Eq.3

j:@5 FIGURE 2. Examples of conditional probability distributions
@.â€œ1. (XIH) and p(X1H1) and decision threshold X@. With good separa

tion of distributions, threshold can be set so that probability of
false-positiveresponse(shadedpartofp(X@H0))or false-negative
response(shadedpart of p(X1H1))will be small.
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For SKE-BKE tasks with correlated Gaussian noise, the PW
observer is the optimal observer.

However, neither the NPW observer nor the PW observer has
been as consistent as the CHO in predicting human detection
performance (19,20). The CHO can be divided into 3 components:
the channels, a prewhitening operator, and a matched filter, as
shown in Figure 3. For an SKE task, a channel can be represented
by the 256 X 256 vector u, (n = 1, . . ., N) that describes the
channel's impulse response centered on the tumor location. The
scalar product of u, and f is the nthelement of an N-dimensional
channel output vector. We write this output vector as Uf, where U is
the N X 2562matrix with the nthrow containing the elements of u,,.

The CHO prewhitening is aimed at decorrelating the noise in the
channels (as opposed to the image pixels). Therefore, the CHO
prewhitening operator is an N X N matrix defined by U and the
ensemble noise covariance matrices K@and K1. The composite
channel noise covariance matrix is:

â€˜@than@ U[K@ + K1IUt, @q.9

and the prewhitening operator is its inverse, K,@,.As N << 2562,
this inversion is much less demanding than the inversion of K@+
K1required of the PW observer. In addition, for tasks in which the
ensemble statistics are not available, so that covariance matrices
must be estimated using sample statistics, the number of images
required for an inverse to exist is on the order of the number of
elements in the covariance matrix (21).

Finally, the CHO matched filter uses the ensemble mean
difference f1 â€”f@after it has been processed through the channels.

In terms of these components, the CHO template is:

and the CHO SNR is:

Wcho U@ K@ U(f1 â€”@ Eq. 10

SNR..hO [(1@ â€”f0)t U@ K@, U(f1 â€”f@)]â€•@. Eq. 11

CHO Application
CHO models are distinguished by the type of band-pass filter

used. Discretizations of the filters correspond to the Fourier
transforms fl1 @Nofthe channel impulse responses. We tested
2 forms, profiles of which are shown in Figure 4.

A constant-Q model features filters with central frequency
magnitudes that are in a constant ratio Q. With nonoverlapping,
rotationally symmetric, concentric filters having square profiles,
the nthconstant-Q filter takes the value 1 in the range of frequencies
Ef@Q@'/256,f@Q@/256)(pixel 1)and 0 elsewhere (3). For the results
presented here, this model was applied with 4 channels, a
filter-width ratio of Q = 2, and a low-frequency cutoff of f@=
6.5/256 pixel'. This parameter selection was made through trial
and error from tests using CHOs with 3â€”5channels, Q between 1.7:
and 2.3, and f@in the range of 2/256 pixel' to 20/256 pixe1@.
Burgess et al. (6) have suggested averaging results over an interval
ofcutoffs to model shifts in an observer's viewing distance during a
study, but this procedure was not applied here.

Our second model observer, a difference-of-gaussian (DOG)
model, used 3 channels. This CHO was used by Abbey et al. (5) in a
study of iterative reconstruction stopping points. The filters were
derived by taking the differences of pairs of a set of 4 2-dimen
sional gaussians with 0 means and an SD of (2d@J@)â€p̃ixel â€˜,

FIGURE3. (A)FlowchartofCHOoperation.(B) ImageprocessedbyN frequency-selectivechannels,withtumorat location3. (C)
Impulse response for low-frequency channel template. (D) Impulse response for higher-frequency channel. Both impulse responses
are centered on location 3. Contrast of channel rings in C and D was exaggerated for purpose of display. Prewhitening and matched
filteringof outputvector Uf producedtest statistic.
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Location1Location 2Location3StrategyHumanConstant-QDOGHumanConstant-QDOGHumanConstant-QDOGPrimary1.50

Â±0.081.32 Â±0.221.79 Â±0.241.42 Â±0.051.20 Â±0.221.58 Â±0.231.65 Â±0.121.68 Â±0.232.19 Â±0.25Scatter1.18
Â±0.101.03 Â±0.211.45 Â±0.220.98 Â±0.090.92 Â±0.211.35 Â±0.221.52 Â±0.081.46 Â±0.231.70 Â±0.23High-scatter0.73
Â±0.080.70 Â±0.211.03 Â±0.210.93 Â±0.080.70 Â±0.211.24 Â±0.221.16 Â±0.090.99 Â±0.211.22 Â±0.22DPW1.28
Â±0.061.04 Â±0.211.42 Â±0.221.23 Â±0.060.85 Â±0.211.17 Â±0.221.47 Â±0.091.23 Â±0.221.68 Â±0.23High-DPW1.10
Â±0.040.77 Â±0.211.18 Â±0.221.09 Â±0.120.79 Â±0.211.12 Â±0.221.14 Â±0.051.14 Â±0.221.41 Â±0.22For

humans,dataareSNAÂ±1SE;forCHOs,dataareSNRÂ±1SD.

the negative-pixel truncation, the ensemble means 1o and fi of
Equation 10 would be the reconstructions of the noise-free
tumor-absent and tumor-present projection datasets, respectively,
and an analytic expression for the ensemble covariance matrices
would be available (18). The fact that the truncation operation
invalidates this approach to deriving the ensemble statistics was not
recognized in a previous comparison (12) of the CHO to the human
ROC data used in this work, and as a consequence, an incorrect
CHO template was applied.

Statistical Significance and Correlation Tests
Differences in an observer's performance as the result of

strategy were tested at each lesion location using 2-way analysis of
variance and a multiple-comparison t test for paired data (22). For
the average human observer, the data were the individual observ
ers' values of A@.For the CHOs, the data consisted of the
differences in X(f) computed from lesion-presentâ€”lesion-absent
image pairs. In comparing pairs of strategies, we used a signifi
cance level of 0.05 to define statistically significant differences in
observer performance.

Correlations between the average human and model observers
were measured with the Spearman rank correlation test (22), which
yields a linear correlation coefficient p, of the observers' SNR
rankings of the 15 locationâ€”strategycombinations. These rankings
are susceptible to uncertainties in the SNRs as a result of variations
among the human observers and the use of sample statistics for the
model observers. The standard errors in the average human SNRs
were determined from the standard errors in the values of A@(17).
For the CHO, SDs in the values of SNR,@hOwere found from a
propagation-of-error analysis (23) applied to Equation 5. This
calculation required estimates of the test-statistic quantities (XI)and
var(X)1(i = 1, 2), which were acquired by applying w@ to the
study images.

The sensitivity of the rank correlation coefficients to the uncer
tainties in SNR was evaluated through a Monte Carlo analysis. We
created2 setsof 15 independentgaussianrandomvariables.The
SNRs and uncertainties for the average human observer were
assigned as means and SDs for the variables in 1 of these sets,
whereas those for the CHO were assigned to the variables in the
other set. By generating multiple realizations of these 30 variables
and conducting repeated (simulated) Spearman tests, we were able
to calculate an average rank correlation coefficient that accounted
for the observer uncertainties.

RESULTS

Table 1 lists the observer SNRs for the 15 location
strategy combinations, along with SEs for the average
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FIGURE4. Profilesofconstant-Q(top)andDOG(bottom)filter
banks.

where d = 0.573, 0.995, 1.592, and 2.653. The DOG channels are
also rotationally symmetric but have substantial overlap.

The first- and second-order ensemble statistics necessary for the
prewhitening and matched-filter processes were estimated from the
ROC images. This introduced an uncertainty in the SNRs of the
model observers. Whereas human observer performance is based
on only the study sets of 80 images per strategy and location,
sample statistics for the CHOs used both the training and study
images (totaling 100 images per strategy and location). This is a
fairly small set of images on which to base the estimates, and
having an equal ratio of lesion-present and lesion-absent images
helped to ensure that the uncertainties in the estimates would be
uniform. However, more clinically realistic probabilities p(X Ho)
and p(X@H;)could be chosen to alter this ratio.

Finally, note that if our reconstruction process had not included

TABLE 1
SNA Values and Uncertainties for the Human, Constant-Q, and DOG Observers
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Strategy LocationScatterHigh-scatterDPWHigh-DPWPrimary

I *(<1O@, <102, <1O@)*(0.1, <102,<102)2
(0.03,0.27,0.51)(0.01, 0.01,0.15)*(0.14, 0.05,0.03)3
(0.37,0.86,<102)(<10@, <iO@, <10@)(0.59, <102, <10@)(<10@, <10@,<10@)Scatter

1(<102, 0.47,0.23)**2***3(0.01,

0.01,0.05)*(0.01, 0.15,0.4)High-scatter
1(<102, 0.44,0.3)(0.01 , 1.0,0.97)2**3**DPW

1**2*3(0.03,0.99,0.48)*No

significant differenceswere found at thatlocation.Significance
levelsaregivenas(human,constant-Q,difference-of-gaussianfilter).Boldface indicates level was significant.

values of Q between 1.7 and 2.3. This is consistent with the
determination by Myers and Barrett (3). There was also little
difference among 3, 4, and 5 channels. The correlation was
more sensitive to f,@.A band between 5.5/256 pixel 1 and
10.5/256 pixel@ provided fairly consistent results for the
4-channel model with Q = 2 (Fig. 5).

Pairs of strategies that differed significantly at a given
location for at least 1 observer are indicated in Table 2. For
these pairs, Table 2 also shows how close to significance the
differences were for the other observers. For both the human
and constant-Q observers, the SNR differences between the
primary and high-scatter strategies were significant at all
locations. For the DOG observer, this was the case at
locations 1 and 3. In addition, the differences between the
primary and high-DPW strategies were significant for the
CHOs and either significant or nearly so for the human. InS
of 6 significant differences for the human that did not
involve the primary strategy, no significance was found for
either CHO. The human observer also supplied the only
instance (between high-scatter and high-DPW at location 1)
in which the DPW scatter compensation provided statisti
cally significant improvement over an uncorrected strategy.

Overall, more significant differences between strategy
pairs were found for the human observer than for the CHOs.
The constant-Q observer was shown to have 8 significant
differences, and, for 7 of these, the human observer showed
either significant or nearly significant differences. The
exception was the primary and DPW strategy pair at location
3, wherethe significancelevel for the humanwas 0.59.
However, significant differences for the human were less
likely to be good indicators of significance levels for the
constant-Q observer.

The ranking of the locationâ€”strategy combinations by the
constant-Q observer correlated better with the human ob
server than did the DOG ranking. The rank correlation
coefficient for the human and constant-Q observers compari
son was Ps 0.92, which allowed rejection of the null
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FIGURE 5. Spearmanrankcorrelationcoefficientp@as func
tion of constant-QCHOcutofffrequencyf@.

human observer and propagation-of-error estimates of the
SDs for the CHOs. For every strategy, each observer
performed better with the tumor at location 3 than at other
locations. This location was closest to the body's outer
surface (Fig. 1), leading to less attenuation and scatter in the
projection data than was the case with the other locations.

The human SNRs were generally higher than the con
stant-Q observer and lower than the DOG observer, but the
SNRs for the constant-Q observer can be improved by
lowering the cutoff frequency f@.The parameter Q and the
number of channels had smaller effects. Our final choices for
the constant-Q parameters were based on outcomes of the
Spearman rank correlation test. We found little difference in
the CHO's ability to correlate with the human observer for

TABLE 2
Significance Levels Between Pairs of Strategies by Observer and Location
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hypothesis of no positive correlation at the P 0.000001
level. The coefficient for the human and DOG observers
comparison was Ps 0.84 (P 0.00004).

Figure 6 presents a scatter plot of the SNRs for the
constant-Q and human observers. The hollow symbols for a
given tumor location represent the non-DPW strategies (i.e.,
primary, scatter, and high-scatter), and the solid symbols
represent the DPW scatter-compensation strategies (i.e.,
DPW and high-DPW). It is evident from this plot that our
rank correlation coefficients could be very sensitive to the
uncertainties in the SNRs. To test this, we applied the Monte
Carlo technique that interpreted the SNRs and uncertainties
of Table 1 as the means and SDs of gaussian random
variables. The result from 1 million trials was an average
rank correlation coefficient of 0.66 (SD 0.13) for the
human and constant-Q observers and 0.64 (SD = 0.14) for
the human and DOG observers.

DISCUSSION

The results of this study show a significant positive
correlation between the rankings of the average human
observer and the constant-Q CHO for the considered SKE
BKE detection task. The correlation with the human ob
server was not perfect, but a true optimization of the CHO
parameters was not an option, because efficient techniques
for doing so are not currently available. As used to produce
the data in Table 1, the constant-Q CHO is very similar to
those used by other researchers (3,6). We found that changes
in the value of Q and the number of channels did not have a
large effect on the ability of the CHO to predict human
performance. Given the good performance of the DOG

modelas well, these results suggest afairdegree ofstabffity in the
channelized model for correlating with human observers.

Other model observer comparisons to the human observer
data used in this work have been reported (12, 13,24). The
NPW observer was shown to correlate well with the average
human observer for this detection task (13) and for related
tasks (24). The CHOs applied here compare favorably with
the NPW observer for our SKE-BKE detection task, because
the rank correlation coefficient for the NPW observer was
reported as 0.69 (P 0.005) (13). The NPW observer also
did a good job of predicting human performance for the
non-DPW strategies, with a rank correlation coefficient of
Ps 0.95 (P = 0.001) when only these 9 combinations of

lesion location and strategy were considered. This was also
the case for the CHOs: the constant-Q observer produced a
rank correlation coefficient of Ps 1.00, and the DOG

observer yielded Ps 0.93 (P 0.0003) when only the
non-DPW strategies were ranked. This indicates that the
CHO prewhiteningoperation is not essential for modeling
human lesion detection in images with variable amounts of
scatter. On the other hand, there was an increase in overall
rank correlation coefficient in going from the NPW observer
to the constant-Q and DOG observers. This is attributable to
the CHO's superior performance for the DPW strategies and
is evidence of a human ability to perform some prewhitening
to overcome noise correlations created by the scatter subtrac
tion method.

Although the CHOs showed improved correlation with
the average human for the DPW strategies, there were some
notable differences in how the CHOs and human observers
reacted to DPW scatter correction. At the levels of scatter
used in the scatter and DPW strategies, the human per
formed better (albeit not significantly so) with the corrected
images, whereas the CHOs showed either a degradation or
no improvement in performance. Yet at the elevated scatter
levels used in the high-scatter and high-DPW strategies, all
observers tended toward improved perfonnance with the
corrected images. This apparent contradiction for the CHOs
is explained by the trade-off between the advantage of DPW
contrast enhancement versus the problems caused by the
increased noise correlation in the scatter-corrected images.
This trade-off is a function of scatter level. For the normal
scatter level, the reduced image contrast resulting from
scatter was not debilitating for the CHOs, so that the DPW
contrast enhancement had little effect, whereas the added
noise correlation led to a net loss in performance. With
elevated scatter, poor contrast in the uncorrected images was
a much greater impediment for the CHOs, and the contrast
enhancement provided by DPW overcame the disadvantage
of increased noise correlation.

These conflicting trends for the normal and elevated
levels of scatter show that despite the good correlation
exhibited between the CHOs and human observers, the
CHOs do not predict human performance accurately enough
to serve as replacements in our psychophysical studies. But
the outcome of our significance testing does suggest that the
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constant-Q observer could be used to screen for significant
differences between strategies before a psychophysical study
with human observers. However, in psychophysical studies
comparing image processing or acquisition strategies for
which the true differences in human detection performance
may be small, proving that statistically significant differ
ences exist can require many more than the 100 images per
each strategy we have used (23), and the benefit of the CHO
may be negligible. This points to the problem of using
sample statistics as estimates of the ensemble quantities in
the CHO template and suggests that efforts should be made
to find an expression for the ensemble statistics if at all
possible. Once the images have been reconstructed, how
ever, application of the CHO template can be very efficient.
The time required to generate the set of 15 SNRs and
uncertainties given in Table 1 for either CHO was on the
order of 40 5 using a 400-MHz DEC Alpha workstation
(Compaq Computer Corp., Houston, TX).

This study is the starting point for model observer
research involving detection tasks that more closely approxi
mate clinical tasks with SPECT imaging. The most substan
tial change will be the use of localization ROC (LROC)
studies, in which tumor locations are not furnished to the
observers, in place of the SKE-BKE ROC studies (25).
Other sources of task variability to be considered are
multiple lesion sizes and fluctuations in the anatomic
background. Such alterations in the tasks present the chal
lenge of modeling the human's detection processes but also
of developing an effective model that is computationally
efficient. Our first steps in this direction have entailed
comparisons of human LROC and CHO SKE-ROC perfor
mance to see whether correlation persists.

CONCLUSION

The results of this study show a significant positive
correlation between the average rankings of the human
observers and the CHOs for the considered SKE-BKE
detection task. Although this provides further evidence that a
channelized observer might serve as a replacement for
human observers in psychophysical studies, the role of the
CHOs used in this study would be limited to providing an
initial screening for significant differences between strate
gies before the human study. More research is required to
determine the validity of this role for other detection tasks.
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