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A wide range of techniques for registration of medical images has
been devised in recent years. The aim of this study is to quantify
the overall spatial registration error of 3 different methods for
image registration: interactive matching, surface matching, and
uniformity index matching as described by Woods. Methods:
MRI and ethylcysteinate dimer-SPECT images of the brain were
registered for 15 patients. The matching error was assessed by
determining intra- and interobserver variability of registrations.
Quantification of the registration error was based on the mean
spatial distance of 5000 voxels between 2 image positions. The
mean position after repeated registrations in each patient was
used as the gold standard. To evaluate the coherence of the 3
different registration methods, intermethod variability was deter-
mined. Results: Interactive matching showed an intraobserver/
interobserver variability of 1.5 6 0.3 mm/1.6 6 0.3 mm (mean 6
SD). The time demand for this method was 11 6 5 min. Surface
matching revealed a variability of 2.6 6 1.1 mm/3.8 6 1.0 mm
and a time demand of 26 6 12 min. Reproducibility of Woods’
algorithm was 2.2 6 0.8 mm with a time demand of 9 6 3 min. In
4 of the 15 cases, Woods’ method failed. The mean deviation
between all 3 methods was 2.3 6 0.8 mm. Conclusion: With a
suitable user interface, interactive matching had the lowest
registration error. The influence of subjectivity was shown to be
negligible. Therefore, interactive matching is our preferred tech-
nique for image fusion of the brain.
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Several methods for image registration have been devised
in recent years to bring images of different modalities into
spatial agreement. Interactive matching is performed by
entering transformation parameters into the registration
system or by user guided realigning of multimodality data
on the computer (1–4). Most automated methods are based

on corresponding surfaces (5–8) or gray-level distributions
(9,10).

Despite increasing capabilities of automated registration
methods, interactive image registration shows an accuracy
that is comparable or superior with those of automated
techniques (1–4). Automated methods based on surface
matching, mutual information, gray-value correlation,
Woods’ algorithm, joint entropy, and external or internal
markers were compared in several studies (11–14). In these
studies, the algorithm according to Woods et al. (10) was the
most accurate (11–14). In our institution, 2 commercially
available workstations have been used for image registra-
tion: Hermes workstation (Nuclear Diagnostics AB, Haeger-
sten, Sweden) and VoxelQ workstation (Picker International,
Cleveland, OH). On these workstations, 1 interactive and 2
widely used automatic methods for image registration
(surface matching and Woods’ algorithm) are available. The
aim of this study was to quantify the accuracy of these 3
methods by a 3-dimensional calculation of error.

MATERIALS AND METHODS

Patients and Image Acquisition
From March 1997 to March 1999, 42 patients were examined

with MRI and ethylcysteinate dimer (ECD)-SPECT with a maxi-
mal interval of 2 wk between both examinations. All patients with
findings normal for age (n5 15) were included in this retrospective
study. The age of patients ranged from 25 to 74 y (mean age, 58 y).

MRI examinations were performed on a 1.5-T Magnetom Vision
scanner (Siemens AG, Erlangen, Germany). In our routine MRI
protocol for brain examinations, images were acquired with a
T1-weighted MPRAGE (magnetization-prepared rapid gradient
echo) sequence (repetition time, 11 ms; echo time, 4.9 ms). One
hundred twenty-eight contiguous sagittal slices with 1.3-mm
thickness were recorded into a 2563 256 matrix with a pixel size
of 1.0 mm2. Images were resampled to a set of 64 strictly transverse
(not dependent on any special morphological features) slices with a
thickness of 2.0 mm.

All patients were administered 650 MBq [99mTc]ECD intrave-
nously for the perfusion brain SPECT scan. SPECT images of the
brain were acquired on a triple-head gamma camera equipped with
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fanbeam collimators (Prism 3000 XP; Picker International). Acqui-
sition parameters included a 15% energy window centered on 140
keV, a rotational radius of 13 cm or less, 120 projection angles over
360°, and a 1283 128 matrix with a pixel width of 2.1 mm in the
projection domain. Data collection started 60 min after injection.
Projection images were reconstructed by filtered backprojection
and filtered by a low-pass filter. For uniform attenuation correction,
Chang’s first-order method was used. Pixel size within recon-
structed SPECT images was 2.5 mm. The resolution given as full
width at half maximum (FWHM) was 6 mm. According to our
routine reconstruction protocol, images were uniformly resliced by
drawing a line connecting the anteriormost aspect of the frontal
pole to the posteriormost aspect of the occipital pole, which
approximates the line connecting the anterior and posterior com-
missures.

Image Registration
In all cases, intrasubject registration was performed by means of

a rigid body transformation. The MRI study was defined as the
primary fixed dataset, and the SPECT study was reoriented. In rigid
body motion there are 6 degrees of freedom: translation and
rotation along 3 orthogonal axes. Definition and orientation of axes
are shown in Figure 1. Image scaling was determined from the
known pixel size and slice thickness of both studies. Single steps
for transformations were not restricted by the resolution of any of
the modalities. Transformations could be performed even in
subvoxel steps.

Error Calculation
Each set of registration parameters defines a certain position of

the transformed dataset in 3-dimensional space. The mean spatial

distance I between n corresponding voxels yi and xi of 2 image
positions (Fig. 2) is given by:

I 5
1

n o
i51

n

\yi 2 xi \ .

An average position of the 3-dimensional dataset was calculated
to evaluate variability of results for repeated application of 1
registration method in 1 patient. The distance I between this
average position and the position after each individual registration
was determined (Fig. 3). Intra- and interobserver variability was
assessed by averaging related I values (Table 1).

To evaluate the coherence of the different registration methods,
15 registrations (all 3 matching methods with 5 attempts each, 1
observer) in each of 11 patients (11 patients for whom all 3
matching methods were successful) were compared. According to
intra- and interobserver variability, the mean position of these 15
registrations was determined, and the resulting I values were
averaged.

I was calculated for a subset of 5000 voxels isotropically
distributed over the brain volume. Selection of these voxels was
done by random generation of voxel coordinates leading to a Monte
Carlo simulation. This method has been shown to be appropriate
for random selection of points (15). To determine the number of
voxels necessary for obtaining a stable result, variability of the
mean spatial distance I depending on the number of voxels was
analyzed in 5 randomly chosen patients. After using 5000 voxels,
variation of I was,0.01 mm. Therefore, these 5000 voxels can be
considered representative for the entire brain volume. Deciding
whether a voxel was located inside or outside the brain was done by
a SPECT-based threshold mask representing the brain contour. The
threshold was determined by adapting the maximum fronto-
occipital brain diameter in SPECT to that measured in MRI.

Because 2 different registration systems were compared, conven-
tions about the handling of images had to be considered. Initial
alignment of images and center of rotations were different on both
systems. Therefore, the resulting influence on translation param-
eters was corrected. The order of rotations was the same on both
systems.

Interactive Matching
Interactive matching was performed on a VoxelQ workstation

(system specifications: Sun Ultra Sparc1, 167 MHz, 128-MB
random-access memory [RAM]). A sagittal, coronal, transverse,
and oblique (freely adjustable) slice is displayed simultaneously on
a split screen with 4 view ports (Fig. 4). Gray-scale MR images are
overlaid with color-coded SPECT images in each view port. The
window levels and widths of MRI and SPECT images can be
adjusted independently to get adequate image contrast for registra-
tion. Images can be zoomed to use the full resolution of 4503 450
pixels per view port. For image registration, the SPECT image is
moved in relation to the MR image (translation and rotation) with
the computer mouse. This must be done in all orientations. For
better visual control, each transformation during this process is
immediately updated in all 4 view ports. Fine-tuning of this
transformation in subvoxel steps can be done by arrow keys until
the best fit is achieved. Finally, registration was controlled by
visual inspection of each slice in any orientation with special
attention to structures such as basal ganglia, corpus callosum,
interhemispheric fissure, and gyral surfaces.

For all 15 datasets, interactive matching was repeated 5 times by
FIGURE 1. Definition and orientation of axes for translations
(X, Y, and Z) and rotations (XY, XZ, and YZ).
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an experienced observer (trained radiologist) to assess intraob-
server variability. In each repetition, the order of the 15 datasets
was chosen randomly.

To evaluate interobserver variability, matching of 5 randomly
selected datasets was repeated by 5 other operators. Two operators
were experienced in image fusion (1 trained senior radiologist and
1 trained nuclear medicine physician) and 3 were less experienced
(2 radiology and 1 nuclear medicine residents who perform image
fusion only occasionally). Images were presented randomly to the
observers so as not to introduce any bias in the process as a result of
image order. The same 5 datasets were presented to the 5 observers.

Surface Matching
Surface matching was performed on the same VoxelQ worksta-

tion in all 15 cases. In a first step, the brain surface had to be
segmented in both studies. Segmentation of MR images was done
manually by outlining the brain contour in each slice with the

FIGURE 2. Given 2 brain positions, one
defined by the gold standard and the other
by a single registration trial, registration
error for this trial is calculated as average
distance between corresponding voxels X
and Y.

FIGURE 3. Definition of gold standard Pm. Pm is defined as
mean position resulting from different positions P1–P5 represent-
ing repeated registrations.

TABLE 1
Spatial Registration Error

Parameter
Mean
(mm)

SD
(mm)

Maximum
possible

error* (mm)

Interactive matching
Intraobserver variability (15 patients, 5

registrations each by 1 observer) 1.5 0.3 5.6
Interobserver variability (5 patients, 5

registrations each by 5 observers) 1.6 0.3 5.8
Surface matching

Intraobserver variability (15 patients, 5
segmentations each by 1 observer) 2.9 1.1 10.5

Interobserver variability (5 patients, 5
segmentations each by 5 observers) 3.8 1.0 11.7

Woods’ algorithm: reproducibility (11
patients, 5 registrations each) 2.2 0.8 8.2

Difference between methods (11
patients, 15 registrations each with
3 methods, 1 observer) 2.3 0.8 8.4

*Maximum spatial distance between 2 corresponding voxels in
that patient and matching trial with worst registration result.
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computer mouse. Segmentation of SPECT images was performed
with a threshold-based, region-growing algorithm. After segmenta-
tion of both studies, the algorithm according to Pelizzari et al. (5)
uses a nonlinear least-square error function to determine transla-
tional and rotational parameters that best fit the SPECT brain
surface onto the surface defined by the MRI contour. To test the
influence of manual segmentation on the matching result, segmen-
tation of the brain surface and surface matching were repeated 5
times by the same observer in all 15 cases. For evaluation of
interobserver variability, segmentation was performed by 5 differ-
ent users in 5 cases. Surface and interactive matching were
performed by the same operators.

Woods’ Algorithm
This iterative algorithm is based on the fact that certain

structures and organs have a similar uniformity of pixel values in
different modalities, yet it does not depend on similarity of absolute
pixel values. As a first step, the MRI dataset is divided into 256
gray-level classes. Each gray-level class c comprising nc voxels is
then projected on the SPECT dataset, and the SD of SPECT pixel
values in each class is minimized by iterative change of transforma-
tion parameters.

In detail, the error function

E 5 o
c51

256

o
v51

nc

(gv 2 gc)2

is minimized, where gv denotes the gray level of a SPECT voxel v
and

gc 5
1

nc
o
v51

nc

gv

represents the mean gray level of all SPECT voxels belonging to
class c. Minimization was done using the simplex method.
Unsegmented MRI datasets including skull and skin structures
were used for Woods’ algorithm, which is implemented on a
Hermes workstation (system specifications: 300-MHz Pentium II
processor, 128-MB RAM). To exclude obvious misalignment by
this method, matching results were checked visually. Wong et al.
(16) showed a misalignment of.4° rotation or.3-mm translation
to be reliably detectable by visual inspection. In our study, 4
patients with an obvious misalignment (rotation. 19°, translation
. 25 mm) for this method were excluded.

To test the robustness of this method, registration was repeated 5
times, starting at different initial alignments for all patients. The
initial alignment was changed randomly by a computer program
between 5 and 50 mm (mean, 28 mm) translation and 3° and 30°
(mean, 17°) rotation along each axis.

To test the influence of using segmented versus unsegmented
MRI datasets in Woods’ algorithm, nonbrain structures were
interactively removed in 5 cases (the first 5 cases from the
alphabetical list of patient names). Registration results of edited
MR images were compared with those resulting from unsegmented
MRI data.

RESULTS

Interactive Matching
We found an average intraobserver variability of 1.56

0.3 mm for interactive matching (Table 1). This value
represents the average spatial distance between 5000 corre-
sponding voxels of the brain. The position of corresponding
voxels was defined by the mean and individual position of

FIGURE 4. User interface for interactive
matching. Gray-scale MR images are overlaid
with color-coded SPECT images in each of 4
view ports. SPECT image is moved (translation
and rotation) in relation to MR image until a best
fit is achieved in all view ports.
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the brain after repeated registrations. SDs of single registra-
tion parameters are shown in Table 2. The overall interob-
server variability was 1.66 0.3 mm (experienced observers,
1.5 6 0.3 mm; inexperienced observers, 1.76 0.4 mm).
There was no improvement of the matching accuracy with
successive interactive sessions during the study. In 1 patient,
the maximum spatial distance between 2 corresponding
voxels in the matching trial with the worst registration result
was 5.6 mm/5.8 mm (Table 1). This maximum deviation
occurred in the frontal (34%), occipital (25%), and upper
parietal (19%) part of the brain as well as in the cerebellum
(22%). It always occurred on the brain surface. Distribution
of this maximum deviation was analogous for all performed
registration methods. The average time demand for interac-
tive matching was 116 5 min, including image loading,
interactive registration, and final visual inspection.

Surface Matching
Reproducibility of surface matching after repeated segmen-

tation showed an intraobserver variability of 2.96 1.1 mm
and an interobserver variability of 3.86 1.0 mm. The
average distance from the mean position was 3.56 1.0 mm
for experienced observers and 4.06 1.3 mm for inexperi-
enced observers. The maximum possible error was 10.5
mm/11.7 mm (Table 1). The time demand for the whole
registration process was 266 12 min. About 70% of the
time was used for manual segmentation of the brain in MRI,
10% for automatic segmentation of SPECT images, and
20% for computing the transformation.

Woods’ Algorithm
Analysis of the 4 patients who were excluded by visual

inspection revealed a rotational misregistration of 5°–40°
and a translational misregistration of 2–37 mm. For the
remaining 11 cases, Woods’ algorithm revealed a reproduc-
ibility of 2.2 6 0.8 mm. The maximum possible error was
8.2 mm (Table 1).

Of the 5 cases in which segmented and unsegmented MRI
data were used for registration, 1 case showed an obvious

misalignment with segmented and unsegmented data. In the
remaining 4 cases, the average reproducibility was 2.36 0.7
mm for segmented and 2.16 0.8 mm for unsegmented data.
After putting segmented and unsegmented data together, the
overall reproducibility was 2.36 0.8 mm. The time demand
was 9 6 3 min. Most of this time was necessary for
computing the transformation.

Coherence of Registrations
The average distance between the mean positions of the 3

registration methods was 2.36 0.8 mm (Table 1).

DISCUSSION

Defining a gold standard for multimodality image registra-
tion in vivo is an elementary problem because true registra-
tion parameters of clinical data are never exactly known.
Every possible reference system that can be used to evaluate
the accuracy of image registration suffers from its specific
limitations: It is difficult to give a precise estimate of the true
registration error in view of the fact that fiducially based
registration itself has inherent measurement errors (10).
External markers are responsible for registration errors
primarily associated with inaccurate localization. Turking-
ton et al. (17) reported an average marker position difference
of 1.4 mm for surface-attached markers. Sipila et al. (18)
encountered a locating error of 2 mm for external markers
placed on a phantom. Even for markers screwed into the
outer table of the patient’s skull, a fiducial registration error
of 1.7 mm was found (14). Furthermore, markers screwed to
the skull do not prevent the brain from moving inside the
skull. In addition, every registration method based on
external markers can be used only prospectively.

Simulated data (e.g., simulated PET from MRI data), as
used by Strother et al. (11), can be used to create image pairs
for which the correct transformation is defined as a gold
standard. Using such simulated data, an error of 2.4 mm for
surface matching and 1.3 mm for Woods’ algorithm was
reported (11). In comparison with studies using original
patient data (14,17,19), these good results may be caused by
the higher level of similarity between MRI and simulated
PET images.

Matching an arbitrarily transformed study back onto the
original can be used only to evaluate intramodality image
registration. In contrast with patient data, phantoms for the
assessment of registration accuracy usually have a better
contour contrast, thereby leading to better registration
results. To measure the registration error retrospectively in
patients, we assessed the reproducibility of image registra-
tion by evaluating the intra- and interobserver variability.

For quantifying the error of image registration, some
authors use the variability of single transformation param-
eters to compare repeated registrations (12,17). However,
single parameters do not represent any clinically relevant
measure for the registration accuracy. Therefore, we calcu-
lated the average and maximum spatial distance between
5000 corresponding brain voxels. A similar approach was
chosen by Strother et al. (11) and Black et al. (19).

TABLE 2
SD of Single Registration Parameters

Parameter

Translation (mm) Rotation (°)

X Y Z Mean YZ XZ XY Mean

Interactive matching
Intraobserver

variability 0.62 0.98 0.72 0.77 1.22 0.73 0.54 0.83
Interobserver

variability 0.59 0.60 0.45 0.55 0.85 1.09 0.74 0.89
Surface matching

Intraobserver
variability 1.62 2.25 1.87 1.91 1.64 1.93 1.89 1.82

Interobserver
variability 2.07 2.39 1.83 2.10 1.83 1.84 2.07 1.91

Woods’ algorithm:
reproducibility 1.92 1.97 1.47 1.78 1.35 1.81 1.38 1.51

Difference between
methods 1.02 1.41 1.50 1.31 1.32 1.22 1.01 1.18

COMPARISON OFIMAGE REGISTRATION METHODS • Pfluger et al. 1827



Habboush et al. (3) evaluated the accuracy of interactive
MRI–SPECT image registration using images with a voxel
size of 2.45 3 2.45 3 2.45 mm3. In this study, an
interobserver variability (3 observers, 2 patients) of 2.7 mm
based on the distance of 3 test points within the brain was
found. Pietrzyk et al. (1) matched MRI with PET data in 2
cases and used MR images with a voxel size of 13 1 3 2
mm3. They found an average SD of 1.3 mm for the
translations and 1.0° for the rotations. In our study, interac-
tive matching revealed an interobserver SD of 0.6 mm and
0.9°. Possible reasons for the higher accuracy in our study
are the resolution of MRI data, on the one hand, and the user
interface for interactive matching, on the other. Because the
whole registration procedure is based on visual control,
simultaneous display of different image orientations with a
real-time update during matching was essential. Another
important feature was the possibility to zoom images, which
allowed subvoxel manipulations.

In contrast with automated methods, the main limitation
of interactive matching is the operator dependence. How-
ever, the results of less experienced operators were even
better than those of surface matching and Woods’ algorithm
in our study.

Our results with automated registration methods are
comparable with those published in the literature. West et al.
(14) reported errors of 2.0 mm for Woods’ algorithm and
2.8–3.8 mm for different surface matching methods after
registration of MRI and PET in a multicenter study. Black et
al. (19) investigated MRI–PET image registration of mon-
key brains and found an error of 2.4 mm for Woods’
algorithm. Turkington et al. (17) reported translational errors
of 2–4.5 mm and up to 2° rotational error for surface
matching of MRI–PET image pairs obtained from volunteers.

In contrast with other authors (10,11,14), we used unseg-
mented MRI data for Woods’ algorithm in this study.
However, we found only minor differences between registra-
tion results using segmented and unsegmented MR images
in 4 exemplary patients. Because of these results, the use of
unsegmented images is considered to be appropriate.

The principle of automated matching algorithms is the
minimization of an error function, leading to the global
minimum in the best case. Local minima in the error
function, in which an automatic algorithm can stop before
the global minimum is reached, are a possible source for
insufficient registration. To assess this problem, multiple
starting points for the registration can be used (20). In our
study, we repeated registration with Woods’ algorithm 5
times, starting at different initial alignments, which resulted
in a variability of matching results of 2.26 0.8 mm. Because
of these relatively constant values over 11 patients, we
consider local minima less probable to be responsible for the
variation of matching results. This variation is more likely
caused by a discretization error of transformation parameters
during the error calculation, thus, leading to an unfair
disadvantage for Woods’ algorithm. Another possible prob-
lem is the error function itself with its limited ability to

extract and evaluate image features that are relevant for
registration. Even if the global minimum of such an error
function is found, the corresponding registration can obvi-
ously be wrong, as shown in 4 of our patients. As described
by Wong et al. (16), a rotational misregistration of.4° and a
translational misregistration of.3 mm are reliably detect-
able by visual inspection. In our 4 excluded cases, these
values were exceeded.

When evaluating only the reproducibility of different
matching methods, a systematic error within each of the
methods cannot be assessed. Therefore, we investigated the
intermethod variability of the 3 different matching methods.
This difference was in a comparable range with the variabil-
ity of each single method, indicating the absence of a severe
systematic error in any of the registration methods.

The mean registration error of the 3 registration methods
in our study was below the resolution of SPECT given as
FWHM. However, the maximum possible registration error
was between 6 and 12 mm and, therefore, exceeds the
FWHM resolution.

CONCLUSION

In this study, surface matching revealed the lowest
registration accuracy and the highest time demand. Woods’
algorithm showed a sufficient accuracy; however, visual
inspection is indispensable to detect obvious misregistration
that occurred in 4 of our 15 cases. With an optimized user
interface, interactive matching showed the lowest registra-
tion error. The influence of subjectivity, which is often
claimed as a disadvantage of interactive techniques, has
been shown to be negligible. Therefore, interactive matching
is our preferred technique for image fusion of the brain.
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