
tions that look for objective data in their review processes, it
is imperative that nuclear medicine provide rigorous evi
dence-based decision models for various existing and emerg
ing diagnostic and management procedures.

HEALTH CARE ECONOMICS

Health care economics is often referred to as pharmacoeco
nomics, because it is primarily the pharmaceutical compa
nies that have the economic incentive and resources to fund
outcomes research for their products. There are currently no
private companies with financial incentives to fund out

comes research for contrasting management algorithms
involving different diagnostic technologies. These compa

nies may fund research in determining the accuracy of the
diagnostic technologies, but rarely would they fund patient
outcome issues for these same technologies. Health care
spending as a percentage of gross domestic product (GDP)
continues to rapidly increase with current estimates at
-â€”18%andpredictedestimatesby theyear2030 of --30%
(1). This is in large part the result of the increase in the
elderly population in the United States. Health care econom
ics is becoming increasingly important because it is unlikely
that society will tolerate 30% of GDP for medical care. To
curtail spending, medical resources will have to be more
tightly partitioned across many competing methodologies
(both diagnostic and therapeutic).

TECHNOLOGY ASSESSMENT

Technology assessment includes a variety of analyses

aimed at answering questions regarding the usefulness of a
given technology for health care delivery. Original research
studies, including clinical trials, can be used to answer
questions as to the effect of a given technology on relevant
outcome measures. Alternatively, secondary analyses can be
performed to understand the existing literature through formal
techniques, including meta-analysis. Formal decision analy
sis modeling can also be used for technology assessment.

Technology assessment is performed by many different
groups, including clinical researchers and dedicated technol
ogy assessment units funded by the AHCPR. The private
sector also has dedicated technology assessment groups,
including Blue Cross and Blue Shield Association Technol

ogy Evaluation Center, ECRI, University HealthSystem
Consortium and the Rand Corporation. The Technology

This review focuses primarily on the methodology involved in
properly reviewingthe literature for performinga meta-analysis
and on methods for performing a formal decision analysis using
decision trees. Issues related to performing a detailed meta
analysiswithconsiderationofparticularissues,includingpublica
tion bias, verification bias and patient spectrum, are addressed.
The importance of collecting conventional measures of test
performance(e.g., sensitivity and specificity)and of changes in
patientmanagementtomodelthecost-effectivenessofamanage
mentalgorithmisdetailed.Withgreaterutilizationof thetech
niques discussed in this review, nuclear medicine researchers
shouldbe well preparedto competefor the limitedresources
availableinthecurrenthealthcareenvironment.Furthermore,
nuclearmedicinephysicianswill be betterpreparedto bestserve
their patients by using only those studies with a proven role in
improvingpatientmanagement.
Key Words: decisionmodeling;meta-analysis;cost-effective
ness
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ultiple federal agencies, including the Food and Drug
Administration (FDA), the Health Care Financing Admiis
tration (HCFA) and the Agency for Health Care Policy and
Research (AHCPR), are interested in decision models for
patient management. These agencies are faced with the
difficult task of resource allocation during a time when the
number of technologies and available methods for patient
diagnostics and management are growing rapidly. How can

these agencies decide which approaches to reimburse and
which to deny? How can this process of resource allocation

be kept objective and unbiased by political pressures?
Answers to these questions currently remain unresolved, but
statistical decision analysis in the form of decision models
may help to provide objective measures of prioritizing
various competing approaches. Decision models should not
be the only consideration for making final decisions, but
should aid in the process of both medical and resource
allocation decision making. Because reimbursement for
newly emerging technologies and radiopharmaceuticals is
critically dependent on federal and private agency evalua
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Evaluation Center (TEC) of the Blue Cross and Blue Shield
Association was organized to formalize the process of
scrutinizing new technologies. This group helps to differen
tiate those technologies with evidence for improving patient
health outcomes from those for which the data are still too
preliminary (2). The TEC criteria are listed in Table 1. These
criteria form a basis on which to evaluate all emerging
technologies. The technology must have a net benefit for
health outcomes that generalizes beyond the research set
ting. It is important to note that the TEC criteria are focused
on medical effectiveness without specifically looking at cost
issues. A technology that meets the TEC criteria will not
necessarily be reimbursed. Each organization may look at
TEC and other criteria to reach decisions related to cover
age.

Because TEC and other similar criteria involve evidence
for changes in health outcomes, nuclear medicine studies
must show not only accuracy and management change data
but also outcomes data. It is not easy to demonstrate changes
in outcome when analyzing an emerging diagnostic technol
ogy. Patients would have to be followed over extended
periods of time (as in randomized clinical trials involving
new therapeutics) to determine net health outcome changes.
However, it may be possible to use small clinical trials to
determine accuracy data along with patient management
changes and then infer impact on health outcomes using
mathematical decision models. When results from multiple
smaller clinical trials are combined for the purpose of a
technology assessment, it is important to include emerging
unpublished data, which may lag behind the sparse pub
lished literature. Nuclear medicine clinical trials could
benefit significantly if study design issues consider the TEC
criteria.

META-ANALYSIS

Clinical Research
The term meta-analysis was first used in 1976 (3) to

describe the efficacy of psychotherapy. Meta-analysis grew
out of the psychology and education literature and is
relatively common in the medical literature, but still infre
quently found in nuclear medicine literature. The nuclear
medicine literature focuses more frequently on literature
reviews without a formal meta-analysis. As the number of

TABLE1
Blue Cross and Blue Shield Association Technology

EvaluationCenterCriteria

Thetechnologymusthavefinalapprovalfromtheappropriategov
emmentregulatorybodies.

Thescientificevidencemustpermitconclusionsconcemingthe
effect of the technology on health outcomes.

Thetechnologymustimprovethenethealthoutcomes.
The technology must be as beneficialas any established alterna
tives.

The improvement must be attainable outside the investigational
setting.

published and unpublished trials continues to increase,
methods for systematic synthesis of research results are
needed. High-quality meta-analysis is needed especially for
providing data for decision models. Mets-analysis also can
be used independently to provide overall estimates of
accuracy (e.g., sensitivity and specificity) and proportion of
patient management changes. A high-quality meta-analysis
is needed for providing data for decision models.

Meta-analysis is the technique of combining study results
to strengthen conclusions about the individual studies when
taken as a whole. The approach, when properly applied,
would allow investigators to determine if a given set of
imaging studies support the diagnostic efficacy of the
modality under study. The end result of the meta-analysis
has both qualitative and quantitative elements. Numerical
results of the sensitivity and specificity measurements,
sample sizes of the individual studies and issues related to
study quality, study design and extent of bias need to be
considered. Furthermore, as more studies become available,
the meta-analysis can be updated easily to remain current
with the latest literature results. For example, one could take
all the small clinical studies performed by various groups on
the role of FDG PET in staging recurrent melanoma and
perform a meta-analysis to assess the overall sensitivity and
specificity supported by these studies. If the studies also
addressed the important issues related to patient manage
ment changes, one could potentially determine the overall
pooled probability of management changes.

Meta-analysis should be viewed as a more formalized
approach to literature review and as an approach that should
supplement, not compete with, a standard literature review.
Although no standardized methods exist for performing and
reporting a meta-analysis, several reviews have covered the
important issues to be considered (4â€”6).The first, most
critical factor before starting a meta-analysis is to define the

scope and goals of the project. Are two technologies to be
compared? What is the clinical question and the population
of interest? These and other issues are critical to define
before launching a literature review for meta-analysis.

Literature Review
Literature searching can begin with searches of computer

ized databases, such as MEDLINE, using key words, subject
items, etc. This initial search needs to be supplemented with
additional searches of other databases, reviews of abstracts
from meeting publications and discussions with researchers
actively involved in the field. Consultation with professional
library services specialized in general literature searches
may also be useful. The search methods need to be reported
explicitly in the final meta-analysis so that future investiga
tors can repeat the search for updating previous results. A
detailed reporting of methods used to obtain the literature
items is critical in helping to determine the completeness of
the meta-analysis.

â€œPublicationbiasâ€•refers to possible bias introduced by
differences in published literature compared with unpub
lished studies. Although one might initially think that it is
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inappropriate to included unpublished studies, this is an
active area of debate. Investigations that do not show
significant efficacy for a given diagnostic test may be less
likely to be published than studies that do show efficacy.
However, the bias is not always necessarily in this direction
(4). Unpublishedstudiescanbelocatedthroughdiscussions
with senior investigators, by following up on abstracts or
through resources at the National Institutes of Health.

â€œConfirmatory biasâ€• refers to a bias introduced by
reviewers of papers who tend to believe data that support
their views and discredit data that does not. Newer studies or
â€œunpopularâ€•data tend to be underreported in the published
literature. An initial meta-analysis should be performed with
only peer-reviewed published data, and then the results
tested by performing a sensitivity analysis (a technique
detailed later) if unpublished data are also included.

Once all studies to be potentially included in an initial
meta-analysis are identified, inclusion and exclusion criteria
can be applied. There are no universal inclusion and
exclusion criteria that can be applied to all meta-analyses.
The criteria depend on what objectives are sought in
performing the meta-analysis. If the objectives are to
determine management changes, then only studies that
include such data can be included. One can always perform a
meta-analysis with relatively broad inclusion criteria and
then perform a sensitivity analysis to determine how the
meta-analysis changes if the inclusion criteria are made
more strict.

Next, the literature should be reviewed to extract sum
mary data. This process should be performed independently
by at least two investigators using a predetermined standard
ized form. Each investigator should be familiar with the area
of investigation being explored in the literature. Raw
numbers should be recorded as opposed to summary mea
sures when available in the reported results. Relevant data
are often missing in published studies, and, if possible,
investigators should be encouraged to contact the authors to
resolve specifics and inconsistencies.

Assessment of study quality is the next step in performing
a rigorous meta-analysis. This is perhaps the most subjective
portion of a meta-analysis. Methods to make this process
more objective include reviewing each study without knowl
edge of the authors and institutions involved. Quality scores
using a prespecified range can be used to provide an estimate
of the overall summary of the assessed quality of each study
by each reviewer. Formal methods for performing quality
assessment have been addressed in the literature and are
reviewed elsewhere (4). Several specific objective measures
can be used to address the quality of nuclear medicine
studies using the following criteria:

1. The population being studied should be well described
(e.g., age, sex). Inclusion and exclusion criteria for the
patients being studied should be explicit. The referral
pattern for the patients and issues of co-morbidity for
the patients should be made clear.

2. The details of the instrumentation, acquisition and
image reconstruction protocols should be clearly de
scribed. Patient preparation issues should also be
adequately described.

3. The reference standard(s) against which the imaging
study is being compared (e.g., biopsy) needs to be
specified. The limitations of the reference standard in
serving as a true â€œgoldstandardâ€• need to be made
clear. This becomes particularly important for true
negative patients, in whom follow-up is usually the
only indirect method ofdetermining the â€œtruth.â€•

4. The imaging test and reference standard should be read
independently of each other. if multiple imaging tests
are involved, they should be read independently of
each other. It may also be necessary to read one or
more of the imaging studies in conjunction with each
other (e.g., a CT and FDG PET study) if, in the final
diagnostic algorithm, this is what will happen practi
cally. The readers performing analysis of the image
study should be optimally chosen to be outside of the
group performing the study to minimize reader or
interpretation bias.

5. If two ore more imaging studiesarebeing compared,
they should be performed on the same patients, or
patients should be randomly allocated across all imag
ing studies being compared.

6. Confirmation of the reference standard preferably
should be done in all patients. If this is not possible, a
random sample of the patients should be confirmed. If
all patients cannot have confirmation performed, then
statistical adjustments for sampling fractions need to
be performed. Verification bias occurs because often
more of the test-positive patients are verified by the
reference standard, but not all test-negative patients
are. Even if the test-negative patients are randomly
selected, this can lead to verification bias unless
appropriate adjustments are made (7).

7. Appropriate reporting of the raw numbers to allow
future pooling of the data with other literature should
be provided. Final summary measures (e.g., sensitivity
and specificity) should be provided along with confi
dence intervals. The reporting of confidence intervals
for sensitivity and specificity (4) is rarely done with
nuclear medicine literature and is Critical for understanding
esthnates ofthe certainty ofthe point estimates.

These criteria are by no means inclusive of all possibili
ties but serve to form a list of the key issues helping
researchers to decide on the quality of the study. Additional
criteria usually will be needed, depending on the exact
reason(s) for which meta-analysis is being performed.

Statistical Issues
Several statistical issues become important as one seeks to

combine data across studies. These include issues of how
and whether data across studies can be combined, whether
variations in study results can be explained by differences in
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Investin FixedInterestAccount

SPAY

SCPAY

MPAY

MCPAY

study characteristics and what are the best estimates of the
summary measures and confidence intervals for the final
summary estimates. Combining sensitivity and specificity
data for diagnostic studies has been addressed (6). The
overall sensitivity and specificity across several studies are
not always combined appropriately by performing a simple
pooled or weighted averaging adjusted for sample size,
because each study may have used different explicit or
implicit thresholds. In general, estimating the sensitivity and
specificity separately underestimates the sensitivity and

specificity. Methods to fit data to a summary receiver

operating characteristic curve (SROC) have been developed
and are detailed elsewhere (8). In cases in which there are
very few studies (3â€”5),it may not be possible to get a best fit
to an SROC. In these cases, there will be no choice but to use
a pooled or weighted estimate for the sensitivity and
specificity. Logistic modeling procedures (9, 10) can some
times be used when there are no threshold differences
between primary procedures. Additional methods are avail
able for dealing with tests with nonbinary results and for
additional complexities introduced by the study design (6).

ApplicabIlity
A well-performed meta-analysis that is based on well

designed primary studies still may not be useful for a given
situation. A nuclear medicine physician must weigh how
applicable the results of the meta-analysis are for his or her
specific population of patients. Similarly, to use a mets
analysis for a decision model, one must be careful that the

meta-analysis and decision model reflect the same clinical
population. Patient characteristics such as age, sex, referral
pattern, co-morbid conditions and other imaging and nonim
aging tests performed before the imaging study of interest
might all be significant factors affecting the study results.
One very important factor that must be weighed is the
patient spectrum. The extent of the disease in the â€œdiseasedâ€•
group and the occurrence of other medical conditions in the
â€œnondiseasedâ€•group play an important role in generalizabil
ity. The patient spectrum is very likely to differ across
practices. This is one of the reasons to be careful when
applying results based on tertiary care centers to those of the
primary care setting or vice versa. For nuclear medicine
procedures, there can also be significant variability in

technical issues related to performing and interpreting the
imaging study of interest.

DECISION MODELING: THE BASICS

Decision modeling is a general methodology for objec
tively choosing between two or more strategies. We all
perform decision modeling in some form or another through
out our professional and personal lives. Consider an ex
ample where an individual debates whether to put $10,000 in
a mutual fund that invests in the stock market, in an
individual company stock or in a fixed interest-bearing
account for a period of 1 y. Most individuals would consider
the primary variables involved (e.g., mutual fund track
history, mutual fund top holdings, mutual fund management
fees, stock market average returns during the last decade,
company profits or earnings, fixed interest rate for interest
bearing account) to arrive at an educated decision. Very few
individuals would structure their decision as a formal
mathematical model to optimize their investment. A collec
tion of the mathematical modeling approaches to optimize a
given outcome lies in the domain of decision modeling.
Many mathematical modeling approaches for performing a
decision analysis are available, including Markov models
and decision trees. Markov models are used to model series
of events with a finite number of outcomes. The outcomes
usually represent health stages (e.g. healthy, newly diag
nosed, dead, etc.). Transition from one health state to
another is modeled with conditional probabilities placed in a
large matrix. Markov models are especially useful when
time needs to be explicitly modeled, as in screening
programs. For further details of Markov-type approaches,
the reader is referred to Sonnenberg and Beck (11). For the
lay person, it is easier to relate to and understand the
mathematics for decision trees.

As an example of a decision model, consider the decision
tree for investing money by one of three different strategies,

as shown in Figure 1. The three primary strategies are (1)
invest in a fixed interest-bearing account, (2) invest in an
individual stock in the U.S. stock market or (3) invest in a
mutual fund with a long track record over the last 10 y. The
key variables, baseline and range of these variables are listed
in Table 2. The square node represents a decision node. From

FIGURE 1. Dedskxitree modelreflec@ng
three pos@b@ finaxidal investment strateg@s
for investing$10,000for periodof 1 y.Square
node represents decision node. Circular nodes
are chanceevents,and triangularnodesare
endpoints or payoff nodes. Three Investment
strategies include investing in fixed interest
account@investhg in indMdual stock afld strat
egythatinvestsinmutualfundthatinvestsin
various stocks. Variable PSMC represents
probabilityof stock market crashing during 1-y
period under consideration.Variouspayoffs
(e.g., FPAY,SPAY)representfinal vaiUesof
initialinvestmentperiodafter1-yperiod.
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DefinitionVariableBaselineRangeInitial

investmentamountI$10,000â€”Fixed
interestaccountrateFl5%4%â€”7%Mutual
fundestimatedreturnMl15%10%â€”20%Individual

stockestimatedreturnSI30%5%â€”40%Probability

of stockmarketcrashPSMC0.150.02â€”0.50Individual

stockreturnifmarketcrashesISRMCâ€”30%â€”50%--+10%Mutual

fund return ifmarketcrashesMFRMCâ€”10%â€”25Â°h,--+5%

lnve in FixedlnterestAcc n IFPAY=$10,5001

@ [SCPAY=$7,000;P=O.150@

ISPAY=$13,000;P=0.8@01Invest in IndividualStoc ______________________1-PSMC

$11 125 StockMarket Crashes MPAY@ $11 @001

1.PSMCInvest in a MutualFund

IMCPAY=$9,000]PSMC

TABLE 2
Baseline Variables for Investment Decision Tree

Shown in Figure 1

30%, unless the stock market crashes, in which case we
expect to lose 30%. Furthermore, the probability of the stock
market crashing during the next 12 mo is estimated at 15%.
For the purposes of simplification, we have not specified in
this example how the baseline and range estimates of all the
variables were arrived at, but let us assume that rigorous
analysis (e.g., a mets-analysis) of the financial markets,
stock and mutual fund data allowed us to arrive at the
baseline values and ranges of this model. These analyses and
the variables included could be explicitly modeled within
the decision tree model or outside the decision models, as
has been done in this case. The key is that a formal analysis
of the supporting literature must be performed before
arriving at a structure of a decision model. This analysis will
also lead to baseline estimates of the mean and ranges of
underlying variables. In the case of financial modeling, this
may come from historical data, financial articles, and other
sources. In medical decision modeling, these data usually
come from a meta-analysis of the medical literature.

Analysis of the decision model is clear for the fixed
investment strategy. Here, the outcome 1 y from now will be
an investment worth $10,500 (assuming the 5% fixed
return). The outcomes for the other strategies are not
possible to predict exactly because they depend on certain
events with probabilistic outcomes. Analyzing the decision
tree model (a process called â€œrollbackâ€•)for baseline
estimates of all variables leads to the values shown in Figure
2. As expected, the FPAY value is $10,500. The other
payoffs (SPAY, SCPAY, MPAY and MCPAY) are as shown.
The process of rollback while trying to maximize returns
leads to the choice of the individual stock strategy as the
most likely to be the winning strategy with a mean expected
value of the investment to be $12,100. The mutual fund
strategy gives a mean expected value of $11,125, and the
fixed investment strategy gives $10,500. The $12,100 is
calculated through the formula 0.85 X $ 13,000 + 0. 15 X
$7,000. It is important to realize that the final return on our
investment, if we choose the individual stock or mutual fund
strategies, will probably not be $12,100 and $11,125,
respectively. These values represent the expected value if
$10,000 could be invested under identical conditions during
thousands of separate such scenarios. Sometimes a strategy

the decision node originate three distinct strategies. The
individual stock and mutual fund strategies have a circular
node, which represents a chance event. This chance event
represents the possibility that the stock market may crash.
Because both the mutual fund return (based on the stock
market) and the stock market return are dependent on this
chance event, both strategies must model this event. At the
end of the decision trees are triangular nodes representing
endpoints or payoffs. This is where the total investment
value at the end of the year is calculated. For example, for
the mutual fund strategy in the case that the stock market
does not crash, the payoff is equal to the initial investment X
(1 + mutual fund estimated return percent/l00). In the
baselinecasethisis$l0,000 X (I + 0.15) = $11,500.

The model shown is an obvious oversimplification but
serves to illustrate the process of decision modeling. The
decision to be made is which is the best investment strategy,
given our understanding of all the variables that will effect
the outcome at the current time. The current model assumes
that we wish to invest $10,000 by choosing only one of three
available strategies. The fixed interest strategy will have a
fixed return of 5% over a l-y period. The mutual fund, based
on our analysis of past performance and the expected
conditions for this year's stock market, is expected to give a
return of 15%. However, ifthe stock market crashes, then we
estimate a loss of 10% of our original investment. The
individual stock that we are considering is expected to return

FIGURE2. Rollbackof decisiontree shownin Figure1 withbaselinevariablesas describedinTable2. Winningstrategyunder
assumptionsofmodelistoinvestinindividualstockwithmeaninvestmentvalueof$12,100.Nextbeststrategyismutualfundstrategy
withmeaninvestmentvalueof$11,125. Finally,losingstrategyisfixedintereststrategywithmeaninvestmentvalueof$10,500.
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would lead to more than the expected value, and other times
less, but on average we would get the value calculated as the
expected value. As such, the rollback values are general
statistical estimates and do not represent any realization for a
given year. The expected values for each strategy, however,
are the statistical estimates for guiding the investment
choice. Of course, if no chance nodes are involved, as in the
fixed interest strategy, then the expected value is fixed and is
equal to the exact value that one would obtain. Based on the
results of Figure 2 one might choose the investment in an
individual stock in hopes of maximizing the return. The
model, of course, can be rolled back again and again under
different assumptions of the underlying variables to further
add confidence to the decision. Additional outcome vari
ables other than total investment value can also be modeled.
For example, one might wish to model the level of investor
anxiety with each strategy and wish to maximize the ratio of
investment return to investor anxiety. Anxiety would prob
ably be the lowest for the fixed interest strategy. The
methods for objectively quantitating anxiety levels would
have to be well understood by the individual performing the
modeling.

Readers of decision tree results are often curious about the
statistical validity of the results obtained. For example, are
the values of $1 1,125 and $12,100 for the expected values of
the mutual fund and individual stock strategies significantly
different? The way to answer this question is not by
performing a statistical test, but to perform sensitivity
analysis and determine whether the gap can narrow under
realistic changes in the baseline variables. P values (for
showing statistical significance) are not calculated for deci
sion trees, and this sometimes causes confusion for new
readers of these types of model results. Applying decision
trees for medical management algorithms can be accom
plished by direct extension of the techniques discussed for
this investment example. In the medical management sce
nario, one usually wishes to minimize costs and maximize
health outcomes as detailed next.

DECISION ANALYSIS

Cost-MinImization
In this type of analysis, the objective is to compare

strategies to determine which strategy minimizes costs. This
type of analysis is fairly limited, except in cases in which the
strategies to be compared are thought to have near-identical
health outcomes. Obviously, if one strictly wished to mini
mize health care costs, one would simply use a strategy that
did absolutely nothing for the patient. This would clearly
minimize costs but would have devastating effects on patient
outcome. Even if an analysis only includes cost issues, it
may be useful in defining the dollar savings and the number
of procedures avoided.

Cost-Effectiveness
Cost-effectiveness analysis (CEA) is a collection of

problem-solving methods, in which a limited amount of

resources must be used to assess the efficiency with which
various medical management algorithms produce health
outputs. The results of applying these methods are usually
reported in cost-effectiveness ratios that reflect summary
measures of the costs of achieving a unit of health effect
(e.g., the cost per year of life gained). CEA is an aid to the
decision-making process but not a cure-all for the process of
decision making. Many additional factors should be consid
ered in addition to considering the results obtained from a
formal CEA. The incremental cost-effectiveness ratio (ICER)
can be used to directly compare the cost of a proposed
strategy with some baseline strategy divided by the life
expectancy (LE) difference between the proposed and the
baseline strategy. Mathematically, ICER (COSTnew
COSTb@lIfl@) Â± (LE@@@â€”LEba@line).Ideally, it would be
optimal to have a new strategy that has lower costs than the
baseline strategy and leads to a greater life expectancy. This
would result in a negative ICER because of the negative
numerator. In many cases, however, the new strategy leads
to a gain in LE compared with the baseline strategy, but at a
greater cost (leading to a positive ICER). In this latter case,
the payer of the health care delivery must ask whether the
additional cost is worth the additional benefit. Typically,
ICER values of $50,000 per year of life saved are quoted as
â€œacceptableâ€•for a new medical management strategy (12).
Alternately, ICERs can be compared to previously published
ICERs of procedures and interventions already accepted in
the medical community.

Different cost perspectives can be considered when per
forming a CEA. From the societal perspective, the cost
perspective is the net burden on the gross national product
(GNP). From this perspective all individuals are included.
regardless of who bears the cost (e.g., HMOs, government,

employers or individuals). Several components must be
considered when performing a CEA from the societal
perspective. These include: (a) direct health care costs, (b)
direct personal costs, (c) direct nonhealth costs and (d)
indirect costs. Direct health care costs include those directly
related to the new medical intervention, downstream costs
induced or avoided, costs of complications incurred, savings
because of avoidance of morbidity, etc. Costs of treating
conditions during added years of life usually are not added.
Direct personal costs include costs of patient transportation,
home equipment, etc. Direct nonhealth costs include costs or
savings that are directly attributable to the medical interven
tion but are nonmedical in nature. An example would be
lawsuits related to a screening strategy that missed a tumor,
leading to tumor progression during the observation period.
Indirect costs include productivity gains or losses by a
patient directly associated with th@disease process and its
management, and opportunity costs, such as travel time. Not
all of these four components need to be modeled for every
CEA, but each needs to be considered before deciding which
has a major economic impact on the particular study and,
therefore, may need to be included.

Several perspectives other than the societal perspective
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are reasonable approaches to performing a CEA. These
include the perspectives of the government, government
health care payers, managed care, hospitals and consumers.
These other perspectives can be important because the
societal perspective does not optimize a CEA from a specific
subgroup perspective. The societal perspective does not treat
any subgroup as more important than another. Only the
societal perspective never counts as a gain what is any
particular subgroup's loss, For CPA involving nuclear
imaging studies, any one of the above perspectives would be
appropriate, but primarily the societal and government
health care payer perspectives have been used.

In the day-to-day practice of medicine, it is very difficult
to keep the societal perspective in mind. Consider, for
example, a low-yield therapeutic protocol with a 5% chance
of putting a cancer patient into remission at a cost of
$100,000.Now consider that the same $100,000could be
used to perform 1000 screening tests for cancer at a cost of
$100per test in whichearlydetectionis knownto havea
â€œhighâ€•probability of cure. From a societal perspective, it is
difficult to justify the use of the $100,000 for one person,
when 1000 people could get the screening test instead. From
the individual's perspective, however, the 5% chance of
remission represents a significant hope that is difficult to
disregard. Nevertheless, the societal perspective is likely to
do more justice to all patients within the medical practice
than to each individual patient.

Also important in CEA is the pretest likelihood of disease
in calculating the number of individuals who are test

positive and test negative in a medical decision tree. Shown
in Figure 3 are the basic probabilities involved in a medical
decision model for an imaging study with a binary outcome.
The post-test probabilityof disease can be calculatedeasily
in both the test-positive and test-negative groups and
propagated further down the decision tree for use in the next
test(assumingindependenceof tests).Shownin Figure4 is
an example of the use of decision analysis with decision

trees for the preoperative staging of non-small cell lung
cancer (NSCLC) (13,14). This decision model compares the
conventional strategy of using CT alone with that of using

CT and FDG PET. The patients are already diagnosed with
NSCLC and are being preoperatively staged. The key is to
detour patients who, because of the spread of NSCLC,
would not benefit from a thoracotomy. This decision model
was used to show under what conditions the CT and FDG

PETstrategyis cost-effective while using life expectancyfor
the effectiveness criteria.

Discounting
Recommendations for CEA (15â€”17)include discounting

both costs and life expectancy. Discounting costs adjusts for
the fact that the current and future value of money is not the
same. The general recommendation is to use 3% above
inflation per year, but values as high as 5% have been used
(17). Discounting health effects is more difficult to under

stand, but if one thinks of an example in which the costs of
two strategies are equivalent, but in one strategy the
life-expectancy gain is immediate and in the other the life
expectancy gain is not realized until many years in the
future, then a need for discounting makes sense. There is
also some support for the discounting rate to be different for
cost versus life expectancy in some cases (17, 18), but for a
baseline analysis they can be made equivalent. Discounting
can make an important difference in the final ICER value,
especially in those models involving significant amounts of
time (e.g., long-term prevention programs). Discounting is
not modeled in the decision model of Figure 1. If we were
looking at investments over multiple years, then it might be
appropriate to discount because the future value of money
would not be equivalent to the current value.

Life Expectancy and Quality of Life
It is generally more difficult for investigators to relate to

life expectancy and quality of life than to cost issues. Life
expectancy should be viewed in statistical terms, with the
understanding that values used are the mean or median
values for large cohorts of individuals. If a model states that
the mean life expectancy of a healthy 64-y-old white man in
the United States is 15 y, this means that on average, as we
consider thousands of such individuals, some will live less
than 15 y, others more than 15 y, but on average the

,@test
FIGURE 3. Probabilities involved in binary outcome imaging study (lestâ€•)for use in decision ttee model. Imaging study Is
representedby chance node in decisiontree. Pretestprobabilityof disease P directlydeterminesnumberoftrue positivesand false
positives in conjunction with s9nsitMty (S) and specificity (Sp) of test. Probability of disease in test-positive patients Is denoted by
post-testprobabilityP'. P@S= true-positive;(1 â€”P)*(1@ S@)= false-positive;P' = (true-positivesÃ· (true-positives+
false.positives]). Similar approach can be used to determine probability of disease In test-negative patients. Post-test probabilities
suth as these can be propagated down decision tree.
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POPULATION

Surgery

FIGURE4. Decisiontreeforpreoperativestagingof non-smallcell lungcancerusingtwomanagementstrategies(PET + CT_st
and CT_st). Upperstrategyuses both CT and PE1 whereas lowerstrategyusesonly CT.Populationblockdescribescharacteristics
of entenng population, such as prevalence of mediastinal and contralateral lung cancer. CT and PET blocks produce several false
positivesandfalsenegatives,dependingonspecificityandsensitivity,respectively.BiopsyÂ±surgeryblockcontainsdetailsof
performing biopsy and sending patient to surgery if biopsy determines no evidence of mediastinal involvement. If biopsy is positive,
then patient does not go to surgery. Associated with surgery block are morbidityand mortality ofthoracotomy. Small stop blocks at end
of decision tree are terminal nodes.

life expectancy will be 15 y. How are investigators arriving
at these mean life-expectancy values? Insurance companies
that use actuarians specialize in determining the mean life
expectancy of various populations and subgroups. Further
more, because various risk factors shorten life expectancy,
several methods are available for determining mean life expec
tancy in cases of associated disease. The declining exponential
approximation of life expectancy (DEALE) is a simple and
effective method for modeling life expectancy, in which an
exponent term is inversely related to the mean life expec
tancy (19). Different exponential terms can be added to
arrive at an overall mortality rate. The DEALE approximation

has been used in many medical decision models and is a good
initial method for dealing with many life-expectancy issues.

Although it is important to model life expectancy in a
decision model, most individuals and societies understand
that it is not only the quantity oflife that is important but also
the quality oflife. The problem, however, is that we all value
quality of life in different ways, and it may be difficult to

quantify objectively. Nevertheless, well-validated methods
exist to measure the quality of life. Quality-adjusted life
years (QALYs) are a commonly accepted method to merge
the concept of life expectancy with quality of life. Methods
for collecting quality preferences involve asking patients or
members of the public to locate their preferences for health
states on a scale of 0â€”1.Techniques such as time trade-off,
standard gamble and category rating can be used (20).
Preferences can also be measured indirectly using systems
such as the Quality of Well-Being Scale and Health-Utilities
Index (21). The use of QALYs in place of life expectancy in
the ICER is a recommended method for CEA (15). QALYs
do have some disadvantages that must be kept in mind.
There is no difference in the absolute value of the QALY
between an intervention that produces small benefits for
many people and one that produces large benefits for very
few people. QALY is a good measure that combines life
expectancy and quality of life, but it cannot reflect all issues
related to measuring effectiveness.
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Costs
Cost issues are easier to understand conceptually in a

decision model than life-expectancy issues, although what
specific costs to use in a decision model are not always easy
to determine. The units for U.S. health care costs are easy:
U.S. dollars. Total costs must be modeled to include initial
and downstream costs. These downstream costs will depend
on probabilistic events that also must be appropriately
modeled. Most cost data that are accessible to researchers
are charges, not true costs. Charges can be nonuniformly
related to true costs, making it difficult to use charges in a
decision model. Furthermore, charges can vary significantly
across different practices. Ideally, one would like to use an
economic task force to perform true costing of a procedure,
including depreciation costs of equipment, mean labor costs,
etc. Practically, it is very difficult to perform rigorous
costing of all components of a decision model. One method
that is being used by investigators publishing in various
journals is to use Medicare-reimbursed costs as a way to
normalize costs across all procedures. This is appropriate
when the government health care provider CEA perspective
is used but may not be optimal when using the broader
societal perspective. However, a CEA with the government
health care provider perspective may be useful for arriving
at first-order estimates before performing a CEA with a
societal perspective.

Cost-Benefit Analysis
This analytical method is the same as cost-effectiveness

analysis, except that the units to measure the outcome of a
treatment are in dollars, not in terms of life expectancy or
quality of life. This means that if a given intervention adds,
on average, a few years to patient life expectancy, then this
must be expressed in dollars before using it as an outcome
measure in a cost-benefit analysis. The terminology is
confusing, but for the most part, because health outcomes

FIGURE 5. Sensitivityanalysiswith re
spect to probability of stock market crashing
(PSMC) (x-axis) with total investment ex
pected value as outcome variable (y-axis)
for decision tree shown in Figure 1. The
intersectionof fixedinvestmentandmdi
vidual stock strategies occurs at value of
PSMC = 0.417 and is referredto as thresh
old value.At this thresholdvalue both strat
egies are expected to have equivalent in
vestmentexpectedvaluesof$10,500.

are not measured in dollars, cost-effectiveness analysis is the
methodology used for decision modeling in the health care
setting.

SENSITIVITY ANALYSIS

This analytic method is the single most-powerful tech

nique available to modeling of many types. This method
allows the investigator to ask â€œwhatifâ€•questions to explore
a model under various conditions. From a mathematical
perspective, a model is composed of numerous variables that
affect one or more outcome variables. Sensitivity analysis
changes one or more variables and determines the effect this
has on the outcome variable(s). For mets-analysis, a sensitiv
ity analysis could be used to determine the effects of
including articles that do not meet certain inclusion criteria
or studies with a lower quality cutoff value than those used
for the initial analysis. For decision analysis modeling, this
approach is used easily to vary model parameters, such as
the cost of a given study, to determine the effect this has on
the mean overall costs per patient for a given strategy. This
approach is very powerful because one can determine how
sensitive the outcome(s) of a model is for a given range of a
model variable.

A sensitivity analysis for the decision tree in Figure 1 with
respect to the variable representing the probability of the
stock market crashing (PSMC) is shown in Figure 5. As
shown, the fixed interest strategy returns the same fixed
amount of $10,500 independent of the probability of the
stock market crashing. The other two strategies return
different expected amounts based on the probability of the
stock market crashing. The â€œthresholdâ€•value of 0.4 17,
where the individual stock and fixed interest strategies
intersect, reflects the fact that these two strategies are
expected to have identical investment returns if the probabil
ity of the stock market crashing during the year is truly as

0

0

I.
PSMC
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high as 41.7%, assuming all other variables remain fixed at
their baseline values. Thresholds for other intersection
points can be determined similarly. To vary two or more
variables, extensions of the same technique also can be used.
An â€œn-wayâ€•sensitivity analysis is the most general way to
explore multiple variables simultaneously. However, sensi
tivity analysis of more than two variables is difficult and
sometimes impossible to present graphically and compre
hend. Therefore, an approach that penalizes multiple van
ables simultaneously is sometimes used. This method penal

izes several or all variables that favor a given new strategy
over the baseline strategy by a fixed percentage (e.g., 10%)
to determine the effects on the outcome variables of health

costs or life expectancy (22).

OTHER ISSUES IN DECISION MODELING

Software Tools
Although decision analysis for a new medical problem

may seem quite difficult, software tools help facilitate the
process. DATA (TreeAge Software Inc., Williamstown, MA)
is one of the more robust packages, designed to help
construct decision models, analyze the models and perform

sensitivity analyses. Convenient graphical output, including
plots of sensitivity analyses, makes a decision tree easy to
analyze. The Computational/Communication Sciences Labo
ratory at UCLA, has developed a software package (MD@)
(23) that is targetedtowardindividualswith little mathemati
cal expertise and facilitates the construction of simple

decision models without explicitly having to deal with
equations. MD@ may be particularly useful for the begin
ning modeler who may not want to get distracted by the
underlying mathematics. Several available software pack
ages have been reviewed (24). The cost of various decision
tools is not prohibitive, with single-user licenses currently
ranging from $200 to $600, with versions available for both
PC and Macintosh computers.

Decision Models for Design of Future Technologies
Perhaps one of the most underappreciated uses of a

decision model is the ability to predict how future technol
ogy should be designed to for a more cost-effective role. For
example, a decision model for screening women with dense
breast tissue could be used to answer the question â€œhow

sensitive and specific must a new scintigraphically based
approach be to be cost effective?â€•CEA could also be used to
determine the costs per patient study needed for cost

effectiveness in a technology yet to be engineered. As more
well-studied decision models become available, they should
be useful in studying future technology development.

Common Pitfalls
There are several common mistakes that investigators

make when applying modeling procedures for decision
analysis. First, one should attempt a bottom-up modeling
approach to build the simplest model that explains the major
features of the clinical problems; not attempt to model every

possible issue at the outset. This is in direct contrast to

top-down modeling, in which every possible complexity is
modeled, followed by systematically pruning down various
issues until a workable model is reached. A bottom-up model
is usually more practical, because one can get lost in the

myriad of possible clinical options in a top-down approach.
The modeling process should also be considered iterative,
with the model constantly being refined on the basis of
previous analysis and continued greater understanding of the
clinical problem. The biggest mistake at the outset is to not
have a good clinical understanding of the management
issues. If the clinical problem is not well understood, the
decision model may be internally consistent but will not
reflect the real clinical scenario.

A good understanding of the incidence/prevalence or
pretest likelihood of disease for patients entering into a
given decision tree is needed. This value will directly affect
the number of individuals that a given imaging study calls
out as positive or negative. When multiple sequential tests
(imaging or other) are involved, a lack of independence
between the tests needs also to be considered carefully.
Issues that involve time in a decision tree (e.g., waiting
during a screening strategy) need to be carefully modeled by
accounting for the probabilities of various events during the
waiting interval (e.g., death or progression of disease).

All costs should be carefully modeled. Downstream costs,
including costs of terminal care, should be assessed to
perform an accurate CEA. One good way of ensuring that
one has modeled all the relevant costs is to make sure that
every possible patient pathway is followed out until patient
death. Even if a patient is â€œcured,â€•his or her costs and other
outcome variable issues need to be followed until death to
properly compare the patient with those who were not cured.
Some issues surrounding the inclusion of downstream costs
remain controversial and are discussed elsewhere (25).

CEA analysis is not easily performed by a single investi
gator. A true collaboration is needed between individuals
with clinical expertise and those with mathematical or
statistical expertise. It is also important to understand the
patient's perspective to have a full understanding of the
clinical problem. A common pitfall is to launch into a
decision model without understanding all the downstream
issues that are not directly handled in nuclear medicine
practice. It is extremely important to conduct many physi
cian and patient interviews before developing the mathemati
cal model of interest.

ROLE OF CLINICAL TRIALS

Well-designed randomized clinical trials are a commonly
accepted method for evaluating new therapeutic interven
tions. These trials can be directly coupled to health out
comes, and the net impact of therapeutic interventions can
be ascertained. Clinical trials for diagnostic technologies
with outcome measurements as part of the study design are
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performed rarely and, in my opinion, are not practical or
necessary. It is difficult to construct trials in which the use of
a diagnostic technology can be directly linked to the health
outcomes of patients. However, it is possible to link
performance of a diagnostic test to impact on patient
management. This information can then be used to drive a
decision model that considers the full impact of the diagnos
tic test on health outcomes. If clinical trials are then
eventually possible, they may be used to reinforce the results
of the decision model. In many cases in which full-scale
clinical trials are not possible or practical, a well-constructed
and -analyzed decision model may be used to predict the
cost-effectiveness of a specific diagnostic technology as
applied in a given management scenario.

NUCLEAR MEDICINE META-ANALYSIS AND DECISION
MODELING LITERATURE

Mets-analysis and decision modeling are not new method
ologies nor strangers to the field of nuclear medicine.
However, it appears that decision modeling is generally
overlooked by our field, with an occasional resurgence as it
is applied to new relevant medical diagnostic or manage
ment algorithms. For the most part, our research studies
focus on sensitivity and specificity determination. A few
studies attempt to look at incremental gains, fewer yet
ascertain patient management changes and there are rare
studies that perform a formal CEA. Although it is not the
purpose of this article to review all the mets-analysis and
CEA publications relative to nuclear medicine procedures,
some key examples relate specifically to mets-analysis
(26â€”28),whereas others show its effectiveness in cost
analysis (without considering effectiveness issues formally)
for sestamibi scintimammography (29,30) and cardiac stud
ies (31,32), in the role of sestamibi scintimammography for
screening women with dense breast tissue (33) and in FDG
PET in non-small cell lung cancer and SPN detection
(13,14,22). For the most part, the nuclear medicine literature
is very sparse with respect to both mets-analysis and
decision analysis.

CONCLUSION

Mets-analysis and decision analysis are established tech
niques for modeling data for the purposes of supporting the
use of specific technologies in medical management algo
rithms. With a better understanding and proper utilization of
the techniques involved for these methods it should be
possible for more researchers to apply them to nuclear
medicine studies. This should lead to better acceptance of
our procedures, more efficient utilization of limited re
sources and, most important, better patient care.

This review attempts to clarify some of the issues
involved in mets-analysis and decision analysis. If we are to
remain competitive in the medical community, we must plan
ahead and make the types of analyses discussed in this
article a routine part of our daily activities. If we are well

prepared, then we can continue to refine and defend our
decision models.
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