
he ultimate goal of brain spatial normalization is to
transform brain image volumes to a standard atlas brain so
that corresponding structures coincide spatially. Numerous
algorithms have been proposed for spatial normalization,
ranging from global affine transformations (1â€”5)to regional
deformations (6â€”10).Talairach global spatial normalization
seeks to adjust brain image data to conform to the principal
defining global features of Talairach and Tournoux's 1988
Co-Planar Stereotaxic Atlas of the Brain (Talairach Atlas)
(11) brain space (brain origin, orientation and dimensions).
Regional methods attempt to extend spatial normalization to
the smallest resolved structures. Global spatial normaliza
tion has been shown to enhance detection of focal brain
response in PET studies when intersubject averaging is used
(8, 12, 13). Talairach Atlas coordinates from globally spa

tially normalized images are commonly used for reporting
research findings (14) and for recording their locations in
databases such as BrainMap (15). Even results of brain
studies using regional spatial normalization are reported

using Talairach coordinates (12,16).
In 1990, Bloch (17) proposed the use of the convex hull

(CH) for feature matching with a biological application in
three-dimensional pattern recognition of molecule structure.
Bloch later collaborated with Mangin et al. (18) to develop a
method for registration of PET and MR images of the brain,
but the CH was not used. In 1994, Downs et al. (6) intro
duced the CH as a surface-based model for regional spatial
normalization. A regional radial-warping method was devel
oped to scale brain images using the anterior commissure
(AC) as a fixed internalreference point and the CH as the
reference surface for matching. The objective was to reduce
intersubject spatial variability in 150-water cerebral blood
flow (CBF) PET images to improve group statistical paramet
ric images (SPIs) (12, 13) while maintaining a consistent
reference to the stereotactic space defined by Talairach and
Tournoux (11). Early findings were promising but incon
clusive as to whether the radial-scaling CH method was
better than alternative high-degree-of-freedom methods
for regional spatial normalization (7). Current research is
focused on the improvement and evaluation of the global

Global spatial normalization transforms a brain image so that its
principalglobal spatial features (position,orientationand dimen
sions) match those of a standard or atlas brain, supporting
consistent analysis and referencing of brain locations. The
convex hull (CH),derived from the brain's surface,was selected
as the basis for automating and standardizing global spatial
normalization. The accuracy and precision of CH global spatial
normalization of PET and MR brain images were evaluated in
normal human subjects. Methods: Software was developed to
extract CHs of brain surfaces from tomographic brain images.
Pelizzari'shat-to-head least-square-errorsurface-fittingmethod
was modifiedto fit individualCHs (hats)to a templateCH (head)
and calculate a nine-parameter coordinate transformation to
perform spatial normalization. A template CH was refined using
MR images from 12 subjects to optimize global spatial feature
conformancetothe1988TalairachAtlasbrain.Thetemplatewas
tested in 12additionalsubjects.Threemajorperformancecharac
teristics were evaluated: (a) quality of spatial normalizationwith
anatomical MR images, (b) optimal threshold for PET and (c)
quality of spatial normalizationfor functional PET images. Re
suIts: As a surface model ofthe human brain, the CH was shown
to be highly consistent across subjects and imaging modalities.
In MR images (n = 24), mean errors for anterior and posterior
commissuresgenerallywere <1 mm,with SDs < 1.5 mm. Mean
brain-dimensionerrors generally were <1 .3 mm, and bounding
limits were within 1â€”2mm of the TalairachAtlas values. The
optimalthresholdfor definingbrainboundariesin both 18F-fluoro
deoxyglucose(n = 8) and 150-water(n = 12) PET imageswas
40% of the brain maximumvalue. The accuracyof global spatial
normalization of PET images was shown to be similar to that of
MR images.Conclusion:The globalfeaturesof CH-spatially
normalized brain images (position, orientation and size) were
consistentlytransformedto matchthe TalairachAtlas in both MR
and PET images. The CH method supports intermodality and
intersubjectglobalspatialnormalizationof tomographicbrain
images.
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spatial normalization component of the original regional CH
algorithm.

The CH method resolves several problems often encoun
tered during spatial normalization of low-resolution func
tional PET and SPECT images. The CH method does not
require an MR image because it is based on a single, highly
refined template. Also, the CH method works well with
limited z-axis extent imagers, supporting its use with older
PET images. These combined features support analysis of
functional brain images that otherwise might not be possible
with other spatial normalization methods.

CONVEX-HULLTHEORY

A CH of a set of points is the smallest convex set
containing the points (19). A two-dimensional illustration of
a CH of the brain is provided in the axial-section images of
Figure 1. The CH has several intrinsic properties that make it
an attractive model for automated global spatial normaliza
tion of the brain. First, the brain surface has both convex
(gyral) and concave (sulcal) regions, although most of the
anatomic variability is associated with concave regions (20).
The CH of a brain is a mathematical representation of the
surface that tends to retain gyral and discard sulcal regions.

The discarded regions (principally sulci) are replaced with
convex equivalents spanning the concavities (Fig. 1), result
ing in a brain-surface model with reduced anatomic variabil
ity. Second, the brain surface is difficult to resolve accurately
and consistently in tomographic images because of regional
variations in partial-volume averaging. Although partial
volume averaging is similar over most of the brain's convex
surface (gyral regions), there is a high degree of variability

in partial-volume effects within convoluted sulcal regions.
Therefore, convex brain-surface regions are simpler to
consistently resolve and extract, and the CH can be more
accurately synthesized than the full brain surface. This leads
to a more accurate and reproducible representation of the
CH within and across subjects and modalities. Third, the

FIGURE1. CHcontoursinaxial-sectionimagesofsamesub
ject. (A) 18FDGPET study with CH (solid outline) determinedby
40% threshold. (B) Three-dimensional, gradient-echo, Ti -
weighted MR imageat same section location.CHs derived from
MR (broken outline) and 18FDGPET images demonstratetheir
similarity in these imagingmodalities.

brain is sufficiently complex in shape to support unique
alignment using only its surface features (18,21,22). The CH
retains critical surface features needed to accurately repre
sent dimension (a surface feature) and orientation (three
dimensional shape asymmetry) (Fig. 2). Finally, the CH was
found to exhibit a consistent relationship with internal
landmarks (AC and posterior commissure [PC]). These
intrinsic properties suggest that the CH will be an effective
model for use in global spatial normalization. The central
hypothesis is that when CHs are used for global spatial

normalization, transformed brains will be highly consistent
in dimension, orientation and position and will conform to
these features of the Talairach Atlas brain.

MATERIALSAND METHODS

ScanandStudyInformation
High-resolution, Ti-weighted, three-dimensional MR. l50

water CBF and â€˜8F-fluorodeoxyglucose(FDG) images from healthy
subjects were analyzed retrospectively to evaluate CH global
spatial normalization.

Three-Dimensional MRI (Group 1). Group 1 consisted of 7 men

and 5 women (age range i9â€”48y, mean age 30.2 Â±10.2 y). MR
images were acquired using three-dimensional, Ti-weighted, gradi
ent-echo pulse sequences on a 1.9-T Elscint Prestige imager
(Markham, Haifa, Israel). Slice spacing ranged from i.2 to 2.0 mm,
and pixel spacing generally was < 1 mm. Because this was a
retrospective study, pulse-sequence parameters, spacing and onen
tation were not strictly controlled. Eight of the MR images were
acquired as axial sections, and four were acquired as coronal
sections. Although it was not the goal of this investigation to
evaluate spatial normalization under various imaging conditions,
the variety served to illustrate the nature of the spatial normaliza
lion methods tested. All MR images were evaluated visually on
axial, sagiual and coronal views and judged to be of high quality
and well suited for extracting reference brain surfaces for the CH
evaluation.

Three-Dimensional MRJ (Group 2). Group 2 consisted of 11
men and i woman (age range 23â€”55y, mean age 31.2 Â±9.6 y).
Members of this group were selected from two PET studies and
were well matched with the members of group 1. MR images of
group 2 were acquired in a manner similar to those of group i . Nine
of the MR images were acquired as axial sections, and three were
acquired as sagittal sections. Nine male members of group 2 were
from the same PET study, and these subjects were used for the PET
analyses.

PET Images. All images were acquired on a GE/Scanditronix
model 4096 camera (General Electric, Uppsala, Sweden) with pixel
spacing of 2.6 mm; specified spatial resolution of 6 mm full width
at half maximum (FWHM); interplane, center-to-center distance of
6.5 mm; 15 scan planes; and z-axis field of view (FOV) â€”100mm.
Attenuation correction was performed with a @Ge/@Gapin source.
All PET images were reconstructed in a 128 X 128 matrix using
2-mm spacing (256-mm x- and y-axes FOV). Reconstructed image
resolution, including all filtering, is estimated to be 7â€”8mm
FWHM.

â€˜50-WaterCBF data were collected during a 90-s scanning
period after intravenous injection of â€˜50-water.The scan was
triggered as the tracer bolus entered the FOV (the brain) by the rise
in the coincidence counting rate. Sixty milliCuries (2220 MBq)
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FIGURE2. Three-dimensionalsurface
view of composite MR image (left) used to
synthesizetemplateCH (nght)forleft lateral
(A), inferior (B), superior (C) and anterior
views (D). Note highly convex nature of
templatefor mostof brainsurfaceand slight
departure from convexity (arrows) along
inferiorboundary.

â€˜5O-water(half-life = 123 s) were administered as an intravenous
bolus of 8â€”10mL saline. A 10-mm interscan interval was sufficient
for isotope decay (five physical half-lives). Brain blood flow was
assumed to be proportional to pixel values.

â€˜8FFDGRegional cerebral glucose metabolism was measured
in patients and controls using â€˜8F-FDGand PET. All subjects were
scanned under identical conditions: supine, awake and resting with
eyes closed and ears uncovered. A 185-MBq (5-mCi) dose of FDG
was injected intravenously, and image acquisition began 40 mm
after injection. Absolute glucose utilization rate was not measured.

PET Analysis
PET â€˜50-waterfunctional activation images were analyzed to

determine sites of brain activation in a paired-subtraction study.
Images from 9 of the 12 group 2 subjects, taken from a previously
analyzed study, were reanalyzed. This analysis was done using
inhouse software (MIPS; http:llric.uthscsa.edu/projects/mips). All
images were transformed into Talairach space (2-mm isometric
spacing) using the CH method. A processing mask was used to
isolate brain from nonbrain regions of the image, and brain pixel
values were scaled to produce a mean value of 1000 within the
masked region. Average images for two task states (three repeti
tions of chorus reading, three repetitions of eyes-closed rest) were
calculated for each subject. Average images were subtracted to
form a chorus-minus-rest image for each subject. A z-score SPI was
calculated for each subject by dividing each pixel in the chorus
minus-rest image by the SD within the brain mask. The spatially
normalized SPI was analyzed using change-distribution analysis
(12) to determine x, y and z Talairach coordinates ofactivation sites
using a local-extremum centroid method.

Brain Convex-Hull Software
The design and development of software for automated imple

mentation of global spatial normalization using the CH method is
complete. Earlier work with the regional CH method (7) led to
software tools to extract CHs from three-dimensional brain images
and to create a Talairach Atlas template CH. The CH software was
refined to improve speed and better manage problems with brain
and array boundaries. CH synthesis is based on three orthogonal
applications of Melkman's (23) two-dimensional polyline CH
algorithm. The surface-fitting software developed by Pelizzari et al.
(21) was used as the means to analyze feature differences between
subject and template CHs and to calculate six-parameter (rigid
body) or nine-parameter (global) transformations that minimized
the mean square error (MSE) between the surfaces. The Pelizzari

software was carefully integrated into the CH software by replacing
its head (contour) and hat (point) data structures with head and hat
CH equivalents. The final software was further enhanced to enable
processing of images in a standard orientation using world
coordinates measured in millimeters regardless of the source image
orientation, pixel spacing or slice spacing. A stand-alone Xwindows
based UNIX application (Sun Solaris 2.x; Sun Microsystems, Palo
Alto, CA) with a convenient user interface completed the develop
ment. The resulting â€œchsnâ€•software was used for the controlled
study of the capabilities of CH global spatial normalization.

Global brain image differences develop from extrinsic sources
such as imaging technique (position and orientation) and intrinsic
sources such as variations in brain dimensions. A nine-parameter
global affine transformation was used in the â€œchsnâ€•software
because its nine parameters (three each for translation, rotation and
scaling) can be independently optimized to match the principal
global features of a test CH to those of the template CH. Three
additional global affine parameters, a symmetric shear term for
each axis, are possible for three-dimensional images, but shear is
not a primary global feature of the brain's CH.

Talairach Atlas Template Convex Hull
The original 1988 Talairach Atlas CH template was extracted

from MR brain images in seven healthy subjects, each indepen
dently spatially normalized. These images were used to form a
composite in which the degree of overlap was indicated by pixel
value. Using this composite brain image, a template CH was
formed that consistently followed the brain surface in at least four
of the seven subjects. This template was evaluated previously in 16
subjects using the regional CH method (7). However, it was never
refined to optimally conform to the global features of the 1988
Talairach Atlas brain. A new template was created from the original
composite brain image with several modifications. It was shifted to
match the AC location of the inhouse standard used for analysis
(see Template Convex-Hull Refinement section). Trilinear interpo
lation used for this transformation resulted in slight smoothing of
the image. A threshold of 80% of the maximum pixel value was
determined to be optimal for extracting a CH that best matched the
original template. The CH is hypothesized to have a high degree of
anatomic consistency across subjects, and the seven brains used for
synthesis of the Talairach Atlas template CH are believed to be
sufficient for template development. The composite MR image and
template CH are illustrated in Figure 2.
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TemplateConvex-HullRefinement
MR images were acquired as for group 1. Residual orientation,

size and position errors relative to the 1988 Talairach Atlas after
CH global spatial normalization were used to adjust the composite
brain image from which the template CH was synthesized. Special
utilities within the spatial normalization software were used to
manually perform rotation, scaling and translation and to reslice the
transformed images (5). This was done in an iterative manner. First,
ACâ€”PCline orientation differences about the x- and z-axes were
estimated. Orientation about the y-axis was not changed because
visual inspection of the midsagittal plane indicated no change was
needed. Additionally, y-axis orientation was verified using the
midsagittal plane during template development (7). Residual
orientation errors, mainly about the x-axis, were removed by
reorienting the composite brain, and an intermediate CH template
was synthesized from the composite. The 12 MR images in group 1
were again CH globally spatially normalized using the oriented
intermediate CH template. Major dimensions were measured, and
scale factors were calculated to match mean brain dimensions to
those of the Talairach Atlas. These were applied to the composite
brain image, and an oriented and scaled intermediate CH template
was synthesized. The 12 group 1 images were again globally
spatially normalized using this intermediate template. The differ
ence between the mean location of the AC and its targeted location
relative to the image edges (128 mm from left, 107 mm from
anterior and 88 mm from superior) was calculated. The composite
brain image was translated and a final refined template synthesized.
All subsequent testing and use of the CH method were performed
with this refined CH template.

An independent estimate of the transformation parameters used
in the refinement process was made by fitting the CH from the
original composite image (before any adjustments) to the final CH
template and comparing rotation and scaling parameters for fit. The
targeted and measured rotation and scaling parameters were within
0.10 for rotation and 0.007 for scaling.

SpatialNormalization
Anatomic Imagesâ€”Group 1. All group 1 MR images were

spatially normalized using the CH method and a previously
validated manual spatial normalization method (5). MRI-derived
CHs for each subject were created using images manually edited to
remove nonbrain structures. Editing included removal of the brain
stem below the level of the inferior margin of the cerebellum. A

threshold value (I % of the brain maximum pixel value) was used to
extract the brain surface and synthesize its CH. The group 1
CH-transformed MR images were evaluated by comparing land
marks and features to those of the 1988 Talairach Atlas. The
locations of the AC, PC and brain-â€•bounding-boxâ€•limits were
recorded for CH- and manually spatially normalized images. The
AC and PC were located using axial and sagittal views of MR
images of all subjects. A cursor was used to record x, y and z
coordinates in millimeters of the centers of the AC and PC.
Additionally, the anterior, posterior, left, right, superior and inferior
brain-bounding-box limits were recorded. The inferior limit of the
temporal lobe was used as the inferior brain margin in accordance
with the Talairach Atlas. The brain-bounding-box limit was
designated by using the first slice (1-mm spacing) containing brain
tissue when viewed in an appropriate section image. The anterior
posterior, leftâ€”right(LR) and superiorâ€”inferiordimensions of the
brain were calculated from these measurements. Orientation errors
of the ACâ€”PCline for rotations about the x- and z-axes were
calculated using individual AC and PC measurements. Errors for
rotation about the y- and z-axes of the midsagittal plane also were
estimated by visual inspection in sagittal and axial sections using
the spatial normalization software (5).

Anatomic Imagesâ€”Group2. The goal of this testing was to
measure the performance of the refined CH template in a group of
subjects not used in the CH template refinement. MR images from
12 additional subjects were evaluated as for group 1.An additional
test was performed using nine PET images from each of 9 subjects
in this group. The repeat scans were used to estimate the
reproducibility of each of the nine parameters used for CH global
spatial normalization. A pooled variance across all subjects was
calculated for each parameter. The assumption was no head
movement for repeat scans. Although this is not possible, even with
custom-molded head restraints, these measures provided opera
tional estimates of transformation parameter reproducibility.

RotationalCharacteristics
Two measurements were made to study the rotational character

istics of the CH and the CH-fitting method: (a) the MSE between
unrotated and rotated CHs and (b) the residual MSE after reorienta
tion to an unrotated standard using the CH method. These
measurements were taken from the 12 group 2 MR images. MR
images were used because their CHs cover the full brain (Fig. 3).
An unrotated image for each subject was standardized using a

FIGURE3. LeftlateralviewsofCHsbe
fore and after fitting to CH template for
150-waterPET,FDG PETand Ti -weighted
three-dimensionalMRimagesof samesub
ject. Lighter points are on far side. Silhou
ette outlining CH template is provided for
comparison. Residual RMS error for fitting
was <i .5 mmfor all three imagetypes.
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Measurement Method x (mm) y (mm) z (mm)

two-step process. First, it was oriented to the Talairac/z Atlas
standard using the CH method. It was then translated so that a
midbrain site (midthaiamus) would be at the center ofrotation. Test
images were made by rotating the unrotated standard image by
angles ranging from _200 to +200 in 5Â°steps about the x-, y- and
z-axes. A manual rotation tool within the spatial normalization
software was used to perform the rotations and save images. The
CH software was then used to reorient the test images to the
unrotated standard image. The MSE between CHs of test and
standard images was calculated before and after CH fitting for each
test image.

Brain-Boundary Threshold (PET)
Partial-volume effects and blood flow in convex regions of the

cortical surface are uniform in PET images, supporting the use of a
single-threshold value for defining a brain boundary and for
synthesizing its CH. A study of 12 â€˜5O-waterand 8 â€˜8F-FDGimages
from subjects in MRI group 1 was performed to determine if an
optimal threshold could be established. The MRI-derived CH for
each subject was used as the target when performing a fit with the
CH software. Test CHs were extracted from PET studies using
thresholds defined as the percentage-of-maximum brain pixel
values.

The quality of the fit was assessed using the residual root-mean
square (RMS) error ofthe distance from the target MR image to the
test PET CHs for each subject after transformation. The goal was to
find the threshold that gave the lowest average residual RMS error
for all subjects. This was done by adjusting the threshold from 25%
to 50% in increments of 5%. The CH software was configured to
perform the fitting using five iterations with an option to exit if the
MSE fell below 0. 1. Default values for parameter convergence
(0.05) andmultiplier(20) wereused(24). Testingwasdonewith
and without scaling to evaluate its effect on the residual RMS error.
Thresholds were evaluated separately for the 18F-FDG and 150..
water images.

SpatialNormalizationof FunctionalImagesof Group2
On the basis of the quality of CH global spatial normalization of

MR images in groups 1and 2 and PET-to-MRI fits observed during
threshold testing, it was postulated that direct global spatial
normalization of PET images (PET-to-template) could be achieved
with similar accuracy and precision. The rationale was that the CH
could be extracted in a highly consistent manner using a threshold
determined boundary, even for image types with lower spatial
resolution, contrast and signal-to-noise ratio such as PET and
SPECT. However, landmarks needed for testing spatial orientation
of MRI to PET, such as the AC and PC, cannot be visualized in
low-resolution PET images. Also, in this retrospective study, no
fiducials (imbedded markers) were available for direct testing. To
overcome these problems, the accuracy of the CH method for
functional images was assessed using a three-pronged approach:
(a) visual evaluation of PET-to-MRI matching, (b) measurement of
fit quality using residual RMS values and (c) measurement of
PET-to-MRI gray matter (GM) registration.

Visual Evaluation. Visual evaluation was done using paired MR
and PET images from each subject. Each image was independently
globally spatially normalized using the CH method. Bounding
contours were extracted from PET images using 40% threshold
values and overlaid onto the transformed MR image. The overlays
were evaluated by looking for areas of match and mismatch
between contours and the MR image. Additionally, the match

between PET-derived and template CHs was visually evaluated for
each subject using the XSurfaceFit application (24).

Residual Root-Mean-Square Values. The high quality of fit of
CH-transformed PET images seen during visual evaluation sup
ports the use of residual RMS values as a measure of overall fit
quality. Because MRI fit quality was already shown to be good
(Tables 1 and 2), residual RMS values from PET were compared
with those from MRI to determine how well they related. Nine PET
images were analyzed for each of the i2 group 2 subjects, and
mean residual RMS values were recorded. An analysis of covari
ance was done to test the covanance of mean residual RMS from
PET with corresponding values from MRI in all 12 subjects.

PET-to-MRI Gray Matter Registration. It is well known that
statistically significant extremum sites in PET functional activation
studies develop from blood flow changes within GM (12,13). When
identical PET and MR images are transformed in the same manner,
PET-derived activation sites plotted onto MR images of the same
subject should fall within the GM. Several tests were conducted to
assess GM registration in paired PET/MR images. The chorus
minus-rest SPIs of 9 subjects from group 2 were used for this
evaluation.

For each subject, positive extremum sites (increase in blood
flow) with z scores > 2.30 were isolated and centroids calculated
using intensity weighting in a 5 X 5 X 5 kernel (10 X iO X 10
mm). Before centroid analysis, PET images were smoothed using a
Gaussian filter to achieve a net FWHM of approximately 10 mm.
This reduces the probability of more than one extremum within the
search kernel. Extremum with fewer than two voxels within the
kernel exceeding the threshold z score value were not used. The
positional accuracy for centroid calculation was estimated to be
approximately 1 mm (1/10 net FWHM) (25). Because of their high
positional accuracy and constraint to GM, centroid-determined
activation sites provide a unique landmark to test GM registration
of PET and MR images of individual subjects.

Individual PET activation images (mean = 26 per subject) were
recorded and plotted onto corresponding high-resolution MR
images. The PET activation sites were well distributed throughout
the cerebrum (37% temporal, 32% occipital, 11% frontal, 8%

TABLE 1
TalairachAtlasBrain Global Feature Measurements

AnteriorSNâ€”0.3 Â±0.60.7 Â±0.8*â€”0.2Â±1.4commissureCH1

CH2
CH pooledâ€”O.i

Â±1.2
0.03Â±0.1

â€”0.05Â±0.9â€”0.1

Â±1.4
â€” 1 .3 Â± 1 5*

â€”0.68Â±1.6â€”0.3

Â±1.4
â€”0.4Â±1.1
â€”0.4Â±1.2PosteriorSNâ€”0.3

Â±0.5*â€”26.6Â±1.51 2 Â±1.6*commissureCH1

CH2
CH pooledâ€”0.1

Â±1.0
â€”0.04Â±0.5
â€”0.1Â±0.7â€”26.8

Â±12
â€”27.2Â±1.3
â€”27.0Â±1.30.2

Â±1.4
02 Â±1.5
0.2 Â±1.4DimensionSNâ€”1.0

Â±1.4â€”0.7 Â±1.5â€”0.5 Â±1.1errorsCH1

CH2
CH pooledâ€”

1 .3 Â± 1 .0*

2.1Â±22*
0.4 Â±2.41

.0 Â±2.4
1.3 Â±2.1
02 Â±2.5â€”

1 .3 Â± 3.6

â€”0.4Â±2.8
â€”0.9Â±3.2

*Paired ttest, P< 0.01.
SN = manual spatial normalization method; CH = convex-hull

method;CHpooled= groups1and2combined.
Valuesare mean Â±SD. SN and CH1 values are for group 1,

and CH2 values are for group 2. n = 12 for both groups.
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Landmark CH1 CH2 CHpooled Talairach

TABLE2
Bounding-BoxCoordinatesin TalairachAtlasSpace (inmm)

Posterior Commissure Measurements. The means and

SDs of the PC in millimeters after global spatial normaliza
tion are presented in Table 1. PC accuracy was assessed
based on x and z coordinates that were both zero by

â€”68 definition. The y coordinate ofthe PC is not well established,
68 although numerous values have been reported (7,11). The y

coordinates of the PC compare well with the previously
reported ACâ€”PCdistance (26.7 mm) measured in a different

76 group of 16 normal subjects using the spatial normalization
â€”42 method (5). Paired t tests showed that x and z coordinates for

the PC were both different from zero (P < 0.01) for the
spatial normalization method. The + 1.2-mm value of the z
coordinate for the PC indicates a small mean angulation for
the spatial normalization method relative to the CH method
(â€”@3Â°higher posteriorly). For the CH method, the mean y
coordinate of the PC for group 2 was 0.4 mm posterior to

that recorded for group 1. SDs were all <2 mm and similar
for both the spatial normalization and CH methods.

Orientation. The mean ACâ€”PCline orientation errors for

groups 1 and 2 were < 1.25Â°about the x-axis and <0.16Â°

about the z-axis. Mean rotation of the midsagittal plane
about the y- and z-axes was visually evaluated to be < 1Â°.
These measurements indicate that the mean orientation of
the brain in MR images, CH spatially normalized using the
refined template, conforms well to that defined in the
Talairach Atlas.

Dimensional Errors. The x, y and z dimensions of
spatially normalized brain images were compared with
values previously reported for the 1988 Talairach Atlas

brain (x = 136, y = 172 and z = 118 mm) (5). The
dimensional errors in Table 1 are reported as measured-minus
Atlas values. The mean x, y and z dimensions for manual

spatial normalization were within 1 mm of the atlas brain.

The mean dimensional errors for the CH method in group 1
(template refinement) were all < 1.3 mm, indicating the

quality of the refinement of the template. The mean dimen

sional errors for the CH and spatial normalization methods

were similar for group 1, all being slightly smaller than
target values. The mean brain dimensions for the CH method

in group 2 subjects were slightly larger than target values for
x and y and slightly smaller for z. Pooled measurements
resulted in mean x-, y- and z-dimensional errors of < 1 mm.

SDs of the dimensional errors for the CH method were
consistently larger than those for the spatial normalization
method. This was expected because the spatial normaliza
tion method used the same manual procedure to determine
brain-bounding coordinates. Although paired t tests mdi
cated real differences (P < 0.01) in the x dimensions for the
CH method in groups 1 and 2, these differences were small
in comparison with the dimension (1.5%).

Brain-Bounding Boxes. Statistics for Talairach Atlas

coordinates of brain-bounding boxes measured on MR
images spatially normalized using the CH method are
presented in Table 2. Estimates of the bounding-box loca
tions taken from the 1988 Talairach Atlas also are presented.

Paired t tests showed several mean values to be different

Left â€”67.7Â±1.3 â€”69.4Â±1.2* â€”68.6Â±1.5
Right 67.0 Â±1.8 68.6 Â±1.4 67.8 Â±1.8

Front 70.3 Â±2.4 70.3 Â±1 3* 70.3 Â±1 9* 69
Back â€”100.7Â±1.3* 103.1 Â±1.9 101.9 Â±2.0* â€”103

*Paired ttest, P< 0.01.
CH = convex-hull method; CH pooled = groups 1 and 2 com

bined.
Values are mean Â±SD. CH1 values are for group 1, and CH2

values are for group 2. n = 12 for each group.

limbic, 7% parietal and 5% sublobar). Of these sites, 41% were on
the left and 59% were on the right. The leftâ€”rightdistribution for
the cerebellum was more balanced, with 48% on the left and 52%
on the right. Each site was visually inspected and those falling
within GM noted. Sites falling outside GM were labeled as either
white matter (WM), cerebrospinal fluid (CSF) or other. The x, y
and z distances to the nearest GM were estimated for WM- and
CSF-labeled sites. Chance random spatial matching was evaluated
using a set of uniformly distributed random coordinates con
strained to the bounding limits of the 1988 Talairach Atlas brain
(Table 2). These were scored as GM, WM or CSF for each MR
image, and x, y and z distances to nearest GM were recorded as
above. Points falling outside these tissues were not evaluated. For
each subject, 50 random coordinates were used. Finally, extremum
coordinates from the PET activation studies were randomly
ordered and used to test GM matching in unmatched MR images.
Each subject was evaluated with the number of random extremum
coordinates equal to the number of true activation sites.

RESULTS
Spatial NormalIzation of Anatomic Images

All landmarks were measured relative to the designated
origin (AC) at 128 mm from the left, 107 mm from the
anterior and 88 mm from the superior image boundary.

Anterior Commissure Measurements. The means and SDs

of the AC in millimeters after global spatial normalization
are presented in Table 1. Accuracy of the manual spatial
normalization method for the AC in group 1 subjects was
slightly better than that reported in a previous evaluation (5).

The AC error using the CH method for group 1 (template
refinement group) is < 1 mm. Paired t tests showed that the y
coordinate for the AC was different from zero (P < 0.01) for
manual spatial normalization (group 1) and CH (group 2)
measurements. However, the absolute value of the distance
was small (1 .3 mm). The AC error using the CH method for
pooled groups 1 and 2 was < 1 mm for x, y and z
coordinates. SDs were all <2 mm and similar between the
spatial normalization method (using visual landmarks) and
the CH method (surface based), although it was slightly
larger for the CH method for the y coordinate.

Top 75.2 Â±2.6 74.2 Â±1.5
Bottom â€”41.6Â±2.4 â€”43.4Â±2.3

74.7 Â±2.1*
42.5 Â±2.5
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from the Talairach values (P < 0.01). Mean values of
measured bounding-box coordinates are within 1.4 mm for
left and right dimensions, within 2.3 mm for front and back
and within 1.3 mm for top and bottom boundaries. These
results generally bracketed the Talairach Atlas values, with
group 1 values being smaller and group 2 values being
larger. Mean coordinates from pooled data resulted in values
that were within 1.3 mm of the Talairach Atlas values for all
six boundaries.

Transfor,nation Parameter Reproducibility. The pooled

SDs for rotation angles for the 81 PET images from 9
subjects were 1.28Â°,0.84Â°and 0.45Â°for x-, y- and z-axis
rotations, respectively. The ordering of these measurements
follows the ordering of potential head rotations during scans.
However, the larger x-axis rotation variance might also be
due to the limited z-axis extent available for fitting. The
reproducibility of z-axis rotations is believed to be least
affected by head movement because the molded head
restraint works well at restricting this type of movement, and
the SD for this parameter possibly represents the reproduc
ibility of motion-free studies of all three parameters. This is
consistent with the maximum rotational error of <0.5Â° for
the rotation study in 12 group 2 MR images.

The pooled SDs for translations were 1.19, 1.18 and 0.96
mm for the x-, y- and z-axis translations, respectively. These
measurements indicate that variance in translation param

eters is similar and small. As expected, these pooled SDs
generally were smaller than the SDs for AC and PC
landmarks in Table 1.

The pooled SDs for scaling were 0.007, 0.005 and 0.014
for x-, y-, and z-scale factors, respectively. The z-scale factor
variance was largest, and this is believed to be due to the
incomplete z-axis sampling of the brain (Figs. 3 and 4). Full
brain images were not available for this repeat measure
ments study. The scale parameter variance estimates were
assumed to be minimally affected by head movement
because it is corrected during the fitting process.

CH fitting minimizes the distance between source and
template surface models, and it is remarkable that internal
landmarks, bounding limits and orientation are also well
matched. Measurements from group 2 subjects, not used in
template refinement, show that the CH method can accu
rately perform global spatial normalization to the 1988
Talairach Atlas standard using the refined template CH.

FIGURE4. Overlaysof 150-water(solid
outline)and FDGPET(brokenoutline)brain
contours onto axial (A), coronal (B) and
sagittal (C) MR images from same subject
after CH global spatial normalization. PET
image contours were formed using 40%
threshold. Highlyconcaveportionsof these
contours are automaticallyexcluded in de
velopmentof CH (Fig.3).

TemplateFItting
Figure 3 is a typical example of the fit quality of the CH

method for MR and PET images of the same subject. This
subject was randomly selected from the MRI group used to
refine the template (group 1). For all subjects in this group,
the largest rotation angle for alignment was about the x-axis,
with posterior regions rotated down. This rotation varied
between modality, and for group 1 subjects it ranged from
2.7Â°to â€”6.5Â°for MR images and from â€”18Â°to â€”20Â°for
PET images. Scale factors ranged from 1.02 to 1.10, with the
largest scale factor seen for the z dimension. The overall
quality of fit for group 1 subjects was excellent for all three
image types, as indicated by small mean residual RMS
errors and SDs (1.30 Â±4 mm for â€˜SO,1.40 Â±0.21 mm for

FDG and 1.49 Â±0.25 mm for MRI). Similar residual RMS
values were seen for group 2. The small residual errors for
fitting data from multiple subjects to a single template
demonstrate the CH method's high intersubject consistency.

RotationalCharacteristics
The MSEs between unrotated standard CHs and CHs

rotated about the three major axes were measured. The mean
and SEM of the MSE increased with increasing the angle for
rotations about all axes (Fig. 5A). The MSE is the similarity
measure minimized during the CH-fitting process, and the
curves in Figure 5A measure the level of dissimilarity
between standard Talairach Atlas-oriented and rotated CHs.
The increasing MSE with increased angle is the result of
asymmetry of the CH about the axis of rotation. MSEs were
highest for rotations about the z-axis and lowest for rotations
about the y-axis. This order is consistent with the visual
impression of asymmetry of CHs in Figure 2. The residual
MSEs between unrotated standard CHs and those reoriented
using the CH method were also measured. Reorientation
was excellent, with final orientation difference <0.5Â° in all
cases. The residual MSE versus reorientation angle is plotted
in Figure 5B. These data show that the residual MSE is
approximately a linear function of the reorientation angle.
Preprocessing was necessary to correct the nonzero MSE
intercepts at 0Â°rotation in the raw data. The nonzero MSE
intercept is characteristic of digital-image processing during
rotation, resulting from trilinear interpolation and orientation
related sampling effects. Linear regression analysis was used
to estimate the intercept for positive and negative angles for
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FIGURE5. MeanandSEMvalues(error
bars) for MSE between rotated and unro
tated CHs (top) and residual MSE after
reorientationof rotatedCHs (bottom).Lines
are for visual effect only. Head rotation for
positive angles is nose down for x-axis, left
side down for y-axis and nose left for z-axis
rotations.

each curve and averaged. Corrected data for each curve were
calculated by subtracting its estimated raw-data intercept
from curve values. The corrected curve more closely repre
sents the MSE characteristics due to physical effects of
rotation and correctly reports a zero MSE at the 0Â°angle.

The residual MSE was <0.52 mm2 (0.72-mm residual
RMS value) for all reorientation angles and axes. The
smallest residual MSE was for rotations about the x-axis and
the largest for rotations about the y-axis at each angle. This
is an ideal characteristic, because rotations normally encoun
tered about the x-axis are large (up to 20Â°),with smaller
rotations about the y- and z-axes. The rank order of residual
MSE after CH fitting (y-z-x) is different from the order of
the MSE due to the rotations (z-x-y) (Fig. 5). This is partly
explained by the fact that MSEs after rotation are a measure
of the CH's asymmetry, whereas residual MSEs are affected
by CH asymmetry and the algorithm used in the fitting

process (24). These data indicate that the algorithm had

more influence on residual MSE than CH asymmetry.
Residual RMS values after reorientation are smaller than,
but consistent with, residual RMS values measured for
threshold testing (Fig. 6). Smaller values were expected
since that analysis was done using images from different

imaging modalities.

Brain-BoundaryThreshold(PET)
Graphs of average residual RMS error versus threshold

for the 12 group I subjects are presented in Figure 6.
Residual RMS error is calculated as the square root of the
residual MSE reported by the surface-fitting software (24). It
is a measure of the mean distance in millimeters from
template to test CHs measured along a line from the centroid
of the template CH. The average residual RMS error trend
was modeled as a quadratic function using the polynomial
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fitting procedure provided by KaleidaGraph 3.0 0. 1 (Abel
beck Software, Synergy Systems, Reading, PA) and the
results plotted in Figure 6. The correlation values for this fit
were >0.99 for â€˜50-water data and >0.94 for â€˜8F-FDGdata.

The minimum of each curve was calculated as the point with
zero slope from the model quadratic equations. For 15O@
water data, this resulted in thresholds of 42.7% without
scaling and 41.7% with scaling. For â€˜8F-FDGdata, the

0.5

0FIGURE6. AverageresidualRMSerror
curves have minimum near 40% threshold
for both â€˜@O-water(A)and FOGPETimages
(B). SOs (error bars) follow this same trend.
w/o = without.

20 25 30 35 40
Threshold(%)

45 50 55

minimum residual error occurred at thresholds of 39.5%
without scaling and 39.4% with scaling. For both â€˜50-water
and â€˜8F-FDGdata, the average residual RMS error was
smaller with scaling (jâ€”1 mm) than without (â€”1.5 mm). This
may be due to slight differences in the spatial calibration of
the PET and MR imagers that are compensated by scaling.
One recommendation to correct for spatial calibration dif
ferences in cross-modality registration is to perform the

950 Tm@Joui@.@i.OFNUCLEARMEDICINEâ€¢Vol. 40 â€¢No. 6 â€¢June 1999



analysis with scaling (22,26). The average minimum-error

threshold for both image types was 40.6% with scaling and
41.1% without scaling. The SD of the residual RMS error
was evaluated in a similar manner, and the resulting
minimum variance threshold value was also approximately
41%.

On the basis of these results and the fact that the
error-versus-threshold curves are fairly broad near their
minimum, a practical operating threshold of 40% was
selected for both â€˜50-water and â€˜8F-FDG when creating

CHs. The convex nature of the brain boundary, defined in a
PET image using this threshold, is optimally matched with
that defined by an MR image. Because of this match, the
40% threshold was also considered optimal for direct fitting
of PET images to the CH template (i.e., for global spatial
normalization). The small residual errors for fitting PET
CHs to MRI CHs in the same subject (Fig. 6) demonstrate
the intermodality consistency of the CH method.

Spatial Normalization of Functional Images
Visual Evaluation. Brain-bounding contours extracted

from â€˜50-waterand FDG PET images overlaid onto the MR
image of the same subject illustrate several important
features of the CH method (Fig. 4). MR and PET images
were independently spatially normalized and resliced to
2-mm isometric voxels. First, as seen in the coronal and
sagittal sections, the contours indicating the 40% boundary
for PET images can be highly concave. However, concave
regions are replaced by convex estimates during CH synthe
sis. Second, the limited z-axis extent of the PET imager is
demonstrated in the sagittal image. Third, as seen in the
sagittal PET image (Fig. 4C), contours of several deeper

structures (corpus callosum, caudate and brain stem) follow
their anatomic outlines in the MR image. Finally, there is
good correspondence between the 150-water and FDG PET
contours and the MR image for convex boundary regions.
Fitted CHs were viewed using XSurfaceFit from opposite
sides of the x-, y- and z axes for each PET subject evaluated

(12 from group 1 and 9 from group 2). All subject-derived
CHs were judged to conform well to the template CH and
were similar to those illustrated in Figure 3.

Residual Root-Mean-Square Values. The means and SDs

of residual RMS values for the CH method in the 12 group 2
subjects were 1.47 Â±0. 17 mm for â€˜50-waterPET images
and 1.36 Â±0. 18 mm for MR images. These mean residual
RMS values were slightly larger than the approximately
1-mm value measured when PET images were fitted directly
to MR images for the same subject (Fig. 6) but similar to
those for group 1. The small SDs for residual RMS errors for
both PET and MRI demonstrate the similarity of brain CHs
to the template within this group. Analysis of variance
between PET and MRI residual RMS values revealed a
highly significant F value (P < 0.003), and correlation
analysis yielded an adjusted R value of 0.77. These results,
coupled with visual evaluations, indicate that PET and MR
images are fitted to the template CH with similar accuracy.

PET-to-MRJ Gray Matter Registration. Three sets of

coordinate data were tested on images of 9 group 2 subjects
after CH global spatial normalization. Points outside GM
were labeled as WM, CSF or other. The other category
included brain stem and vessels and was <3% of all labeled
points. Therefore, only GM, WM and CSF sites were
evaluated further. For uniformly randomized Talairach Atlas
coordinate data, the fraction of sites falling in GM (38.3%)
and WM (37.4%) are similar and approximately 50% larger
than the CSF fraction (24.3%). Randomized coordinates
outside the brain were not included. For individual PET
activation coordinate data, the GM fraction rose to 63.8%,
WM dropped to 26.3% and CSF dropped to 10.0%. For PET
activation coordinates randomized across subjects, interme
diate fractions were seen (GM = 43.2%, WM = 33.6% and
CSF = 23.1%).

Although individual subject results did not produce a
100% GM fraction, they did indicate significant overlap of
PET activation sites with GM. Additionally, many of the
WM and CSF sites were very near GM. A cumulative
histogram was calculated to quantify this observation. It
showed increases in the percentage of GM sites when
non-GM sites at various distances from the original GM
boundary were included (Fig. 7). Boxcar distance (sum of x,
y and z distances in millimeters) was used to standardize
bins for the histogram. This distance measure naturally
combines sense and axis differences into a single measure,
and boxcar-type manipulations were used to determine the
shortest distance between non-GM sites and GM. Boxcar
distance tends to overestimate Euclidean distance slightly,
but it provides similar results, as was verified for group 2.
Figure 7 shows that individual PET activation sites provide
the largest GM fraction at each boxcar distance. The GM
fraction approached 90% at a boxcar distance of 2 mm
(mean distance = 1.59 mm). The GM fractions for random
PET activations increased rapidly and were similar to
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FIGURE7. CumulativehistogramofpercentageofGMversus
boxcar distance for individual PET activation sites, randomized
PET activationsites and sites uniformlydistributedwithin Talair
achAtlasbrain.
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individual PET activation fractions (both >95%) for boxcar
distances of 3 mm or more. The mean absolute distance for a
boxcar distance of 3 mm in the individual PET activation
data was 2.40 mm. Uniform random sites resulted in GM
fractions that increased linearly but were consistently lower
for all distances. Sites with boxcar distances of 5 mm were
grouped into a single category (0.5% for individual PET
activations, 3.5% for randomized PET activations and 16%
for uniformly randomized sites). For the uniformly random
ized sites, most distances in this category were much larger
than 5 mm, whereas for PET activation sites most were near
5 mm.

Complete PET-to-MRI GM registration is unreasonable
considering that GM, especially cortical GM, may differ
geometrically because of differences in head orientation and
physiological factors during PET and MRI and regional
distortions in MR images. When combined with confirma
tory results for visual and residual RMS evaluations, the
high GM fractions for individual PET activation sites (Fig.
7) demonstrate a high level of PET-to-MRI GM registration.
As demonstrated using randomized PET activation coordi
nates, PET-to-MRI GM matching also is good when sites
from one subject are plotted onto another, as is common with
atlas referencing. These tests show that functional global
spatial normalization can be performed very well without
the aid of an MR image.

DISCUSSION

These results show that anatomic (MRI) and functional
(PET) images globally spatially normalized using the CH
method conform well to global brain features of the Talair
ach Atlas. The small differences at the extreme bounds likely
reflect differences between the Talairach Atlas and the
brains in the two subject groups in this study. Spatial
precision of these features generally was good (SDs of 2 mm
or less) and similar for deep and surface landmarks. For
studies in which four or more images are averaged, this
should be < 1 mm. This low level of global-feature spatial
variability should prove useful for averaged paired subtrac
tions in functional imaging studies. Landmark conformance
is good (AC, PC and bounds), and the overall quality of the
fit for all 24 MR images to the template was exceptional, as
indicated by the low group average residual RMS error of
1.43 mm (SD = 0.22 mm, maximum = 1.90 mm). It should
be emphasized that although mean locations of tested sites
conformed well to the Talairach Atlas, individual locations

can be several millimeters from corresponding Atlas sites, as
indicated by the SDs in Tables 1 and 2.

Convex-HullSynthesis
For template and subject CHs tested to date, the CH

algorithm has provided highly convex representations across
the brain surface (Fig. 2). The greatest challenge in synthe
sizing the CH is the inferior brain surface, where there are
large concave regions and slight residual concavity can be
seen (Fig. 2). As implemented, the CH algorithm correctly

extracts portions of the inferior surfaces of the temporal lobe
and cerebellum and yields a consistent and highly convex
surface over the remainder of the inferior hull. The slight
concave regions seen along the inferior margin have not
caused any fitting problems. As synthesized, the CHs have
proven to be well suited for use as surface models for global
spatial normalization. A fast, three-dimensional algorithm
such as Quickhull (27) was not considered important since
processing speed and quality of the head model were both

acceptable. Processing time for PET images (128 X 128 X
25 matrix, 16-bit data) was 20 s on a Sun Sparcstation 20
(Sun Microsystems). This increased to 4 mm 45 s for MR
images (256 X 256 X 128 matrix, 16-bit data). For MR
images, approximately half of the processing time was for
data input and CH extraction and half was for surface fitting.
The largest component of total processing time for MR
images was for manual editing to remove nonbrain surfaces,
which can take several hours to do well.

Automated CH synthesis removes operator bias and
eliminates the operator training needed to accurately define
landmarks. The template CH covers the entire brain, includ
ing the cerebellum (Fig. 2). It was developed using high
resolution MR image data and therefore has a large number
of surface points (4420 points in 100 contours). Subject CHs
are extracted in a point-data format. CHs for MR images
consisted of 4000â€”5000surface points. CHs for PET images
had approximately 400 surface points (average of 415 for
18Fp.jG and 429 for â€˜50-waterstudies in group 1). This
smaller number of points was due to the limited z-axis extent
and lower spatial resolution of the PET imager. The number
of points used is 3â€”4times that reported by Pelizzari et al.

(21) as acceptable for registering CT, PET and MR images.
The smaller number of points in PET CHs did not adversely
affect mean residual RMS errors of PET (1.40 Â±0.22 mm)

compared with MM (1.43 Â±0.22) on the basis of pooled
results (n = 24) of groups 1 and 2.

BrainBoundarybyThresholding
Thresholding in PET images to isolate the brain from

nonbrain regions is a common practice in functional image
analysis (12, 13). Although the optimal threshold can vary
because of differences in factors such as tomographic
reconstruction and postprocessing filters, the 40% value is
believed to be a reasonable compromise for PET studies in
healthy subjects. Should a threshold-determined boundary
contain concave regions, they will be eliminated during the
CH-synthesis process (Figs. 3 and 4). Although the 40%
threshold was optimal for the PET images used in this study,
this value might be different for other radionuclides and
imaging modalities. If a single threshold is to be used to
determine the brain boundary, it is recommended that the
threshold that minimizes the difference between CHs of MR
and the test brain images be determined, as was done in this
study.

Suprathreshold pixel values that fall outside the brain
must be avoided. One such problem for CBF PET studies is
scalp activity when blood flow to the skin is high. The use of

952 THEJOuRNALOFNUCLEARMEDICINEâ€¢Vol. 40 â€¢No. 6 â€¢June 1999



right-side markers with high specific activity will also cause
this problem. Additionally, other parts of the body within the
FOV may exceed the threshold value. In each case, the
problem can be resolved by preprocessing to remove
unwanted regional activity. Alternative methods that can
accurately extract brain surfaces and remove nonbrain
regions can be used for preprocessing to derive an appropn
ate boundary for CH spatial normalization.

On MR and CT images, the pixel values for structures
outside the brain are too high to use a single threshold for
brain-boundary detection. The CH method requires prepro
cessing of such images to remove nonbrain tissues. It also is

important to remove the brain stem if it extends below the
inferior limit of the cerebellum. Use of an automated method
to remove nonbrain tissues (28) was not investigated, but
such processing might provide a time-efficient processing
stream for MR and CT images.

Limited Field of View
The PET scanner used in this study (GE/Scanditronix

4096) has a limited z-axis FOV ( 15 slices at 6.5-mm
spacing). This z-FOV is not sufficient to image the full

extent of the brain (Figs. 3 and 4). The SurfaceFit algorithm
(21,23) works well in this case by performing a best fit of the

subject's CH (partial head) to the template CH (full head).
Limited-FOV PET images generally include either the
temporal lobe or the top of the brain, but not both. Measured
residual RMS errors were similar in both cases, and all were
less than the 2-mm value established for rejection. It is

believed that the CH method will perform well with newer
PET imagers with extended z-axis FOV and SPECT imagers
that can image the entire brain.

SPECTApplicability
The single-threshold approach to global spatial normaliza

tion using the CH method should extend to SPECT brain
procedures using labeled tracers such as @mTc@hexamethyl

propyleneamine oxime (29) or @mTc@ethylcysteinate dimer
(ECD) (30) when brain-surface values are larger than
surrounding nonbrain values. Minoshima et al. (8) devel
oped an improved method for spatial normalization of PET
images, and Bartenstein et al. (31) used this method with
regional CBF SPECT images in a study of Alzheimer's
disease. Schiepers et al. (32) used a different method for
spatial normalization in a study of normal brain perfusion
patterns of 99mTcECD in children. These studies indicate a
trend in SPECT brain imaging toward the use of spatial
normalization for averaging across groups of subjects to
define effects. The CH software and template provide a
means to rapidly perform this spatial normalization using an
automated and validated method. In preliminary testing of
the CH method with SPECT, images appeared to be
transformed correctly, with residual errors similar to those
found with MRI and PET.

Regional Image Distortions
Regional spatial distortions of the imaging system can

alter the accuracy of boundary extraction and affect the

quality of global spatial normalization. Inherent spatial
distortions of PET and SPECT imagers often are ignored
because they usually are small compared with the spatial
resolution (21,22,26,33). Most modern SPECT cameras use
spatial linearity corrections to remove minor regional spatial
distortions. Although regional geometric distortions in MR
images have been shown to effect registration accuracy (34),

Hemler et al. (35) reported that they have little effect on
surface-based registration. The low residual errors (1â€”1.5
mm RMS) for fitting PET and MR images from healthy
subjects to the template CH suggest that regional distortions,
if present, are not a major factor in the quality of CH global
spatial normalization.

Regional Brain Distortions
Because the design of this study was to evaluate the CH

method in healthy subjects, regional spatial distortions of the
brain due to anatomic and/or functional lesions were not
evaluated. However, the greatest effect is anticipated for
lesions on or near convex brain surfaces. The majority of the

cortical surface falls within concave regions, and the CH
guards against small regional changes there. CH global
spatial normalization has been used in over 100 brains, and
activations have not caused apparent fitting problems.
Should regional changes cause the maximum brain value to
change, this may affect the accuracy of boundary detection.
However, as shown in Figure 6, small changes have little
effect on fit quality. If a lesion alters a convex surface it may
or may not appreciably affect the quality of CH global
spatial normalization. The CH method is based on error
minimization over the entire CH surface, and this helps
moderate adverse effects of small perturbations. If spatial
normalization is problematic, it likely will be reflected by
significant changes in the residual error. For the PET and
MR brain images analyzed in this study, a residual RMS
error > 2 mm was used to indicate poor fit. This value is 2.5
SDs above the mean residual RMS error determined for
MRI and PET in the group 1 subjects. In future versions of
the CH software, outlier surface points may be ignored
during the final fit to compensate for small regional brain
distortions (lesions); however, this strategy has not yet been
tested.

GlobalVersusRegionalSpatialNormalizatIon
Numerous interactive, landmark-based methods have been

reported for global spatial normalization of PET images
(1,2,5,36). Although regional spatial normalization can
provide better spatial matching of more and smaller ana
tomic features, little evidence has been presented to show
that this improves spatial matching of functional centers in
the brain (4, 10). One use of a nonlinear warping method for
regional spatial normalization was reported to have little
effect on location of peak activation sites in â€˜50-water PET

(36). One study of regional spatial normalization methods

indicated that nearly 90% of the difference between MR
brain images is resolved with a nine-parameter global affine
transformation (4). Regional spatial normalization, based on

CONVEX-HULL GLOBAL SPATIALNORMALIZATIONâ€¢Lancaster et al. 953



current high-resolution MRI, may not be the solution,
because microstructure may not follow macrostructure in
numerous locations within the brain (37,38). It remains to be
shown whether reducing anatomic variability beyond that
provided by the CH method will greatly reduce functional
variability, especially when reporting group effects in a
standard atlas space.

Talairach Atlas Coordinates
CH global spatial normalization provides a means to

rapidly transform a brain image to Talairach space in which
coordinates can be used to indirectly reference locations of
interest. Using Talairach coordinates, names for brain loca
tions can be retrieved from the automated brain-label
database server, the Talairach Daemon (39). It is Internet
accessible and provides data in the form of brain labels and

structure probabilities indexed by Talairach Atlas coordi

nates (http:llric.uthscsa.edu, Projects). The Talairach labels
database contains anatomic labels for the 1988 Talairach

Atlas brain (39). The Talairach Daemon was used to
calculate the percentage of PET activation sites by lobe for
the PET-to-MRI GM registration study. A structure probabil
ity maps database is also provided by the Talairach Daemon
server. It gives the probability of occurrence for several

brain structures indexed by coordinate. This database was
derived from automatically segmented brain structures in
healthy subjects (10). The structures from each subject were
transformed to the 305 Brain Atlas (16,40) in which
percentage of structure overlap was converted to a probabil
ity. The structure probability maps are referenced to a
globally transformed brain image space and are well suited
for use after CH global spatial normalization.

Scopeof Use
Global spatial normalization satisfies the processing needs

for most functional brain imaging studies and can be quickly
and reproducibly accomplished by the CH method. CH
global spatial normalization was designed for use with
anatomic (MRI, CT) and functional (PET, SPECT) tomo
graphic images. Spatially normalized functional PET images
register well with spatially normalized anatomic MR images
(Figs. 1, 3, 4 and 7), supporting fusion for display of

findings. The CH method was not evaluated for functional
MRI (fMRI), but preliminary tests indicate that it will work
well with echo-planar fMRI. It was not evaluated with CT or
SPECT, but preliminary testing with SPECT images pro
duced similar results. Although it has not been evaluated for
clinical applications, CH global spatial normalization should

prove useful in clinical as well as research settings. The
processing is fast, supporting easy integration into a busy
clinical setting.

CONCLUSION

The CH, a surface model of the human brain, was shown
to be highly consistent across subjects and imaging modali
ties. A highly consistent relationship between the brain's CH
and the mean location of two deep landmarks (AC and PC)

was found. This was also seen for brain bounding-box

dimensions and locations. The variance for surface and
interior landmarks was similar. The accuracy of CH global
spatial normalization for PET functional images was shown
to be similar to that for MR images. The registration of PET
activation sites with GM in independently spatially normal
ized MR images was shown to be good. These findings
indicate that the global spatial normalization provided by the
CH method is well suited for the preprocessing required in
the development of SPIs used in the formal statistical
analysis of functional brain studies.
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