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HypoperfÃ¼sionin the Limbic System and Prefrontal
Cortex in Depression: SPECT with Anatomic
Standardization Technique
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Depression is a common psychiatric illness, and several reports
have described cerebral blood flow (CBF) abnormalities on SPECT
studies in affected patients. However, because region of interest
analyses were used to determine significant CBF changes in these
studies, there were methodological limitations. Therefore, we inves
tigated CBF distribution abnormalities in depression on a pixel-by-
pixel basis using SPECT and an anatomic standardization technique
that has been commonly used for PET activation studies. Methods:
Eleven patients with unipolar depression, six patients with bipolar
depression and nine age-matched normal control subjects under
went HMPAO brain SPECT studies. The radioactivities of SPECT
images for each subject were globally normalized to 100 counts/pixel.
Then, each SPECT image was transformed for standard brain anat
omy using a computerized Human Brain Atlas system. For each
group, the mean and variance images were calculated from the
standardized anatomic SPECT images, and group comparisons were
performed on a pixel-by-pixel basis. Results: Significant decreases in
CBF in the prefrontal cortices, limbic systems and paralimbic areas
were observed in both depression groups compared with the normal
control group. Conclusion: Decreases in CBF in these regions may
be related to impaired attention as well as cognitive and emotional
responses, which have been recognized as usual symptoms in
depression. The anatomic standardization technique promises to be
useful for group comparison analysis of brain SPECT on a pixel-by-
pixel basis for individual neurological and psychiatric diseases.
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system; prefrontal cortex
J NucÃ­Med 1996; 37:410-414

De

Received Feb. 22, 1995; revision accepted Jun. 7, 1995.
For correspondence or reprints contact: Ryuta Kawashima, MD, Department of

Nuclear Medicine and Radiology, Division of Brain Sciences, Institute of Development,
Aging and Cancer, Tohoku University, 4-1 Setryo-Machi, Aoba-Ku, Sendai, Japan 980.

Depression is a common psychiatric illness (7), and many
reports have described associated cerebral blood flow (CBF)
and metabolism abnormalities on SPECT and PET studies in
affected patients (2-72). Several investigators have described

CBF decreases in the paralimbic regions (2); left prefrontal and
both temporal regions (3); selective frontal, central, superior
temporal and anterior parietal regions (4); whole brain (5); and
left cerebral hemisphere (6) in patients with different types of
depression. However, a lack of any significant changes in CBF
in depression has also been reported (7). Decreased glucose
metabolism in the left dorsal anterolateral prefrontal cortex may
occur in some types of depression (8,9). The use, however, of
region of interest analyses to determine significant CBF changes in
these studies introduced limitations in the sensitivity of the
imaging approaches (13).

Fox et al. (13) reported that intersubject averaging of PET
images, a technique requiring transformation of brain images of
individual subjects into a standard brain shape and size in three
dimensions (anatomic standardization), allows enhanced detec
tion of focal brain responses. The anatomic standardization
technique also permits group comparisons between normal
control subjects and patients on a pixel-by-pixel basis (14,15).

Recent reports describe CBF abnormalities on PET studies with
anatomic standardization in patients with depression (11,12).
These studies reported the finding of hypoperfusion in the left
anterior cingulate and left dorsolateral prefrontal cortex (77).
Assessment of brain SPECT abnormalities using the anatomic
standardization technique has also been proposed (76).

Recently, Roland et al. (77) developed a new computerized
human brain atlas (HBA) system that transforms the brain
anatomic structures of subjects into a standard anatomic format
using linear and nonlinear parameters. The purpose of the
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TABLE 1
Profilesof 17 Patientswith Depression

ParameterSex(M/F)Age

(yr)Hamilton
RatingScaleMini-Mental

StateMedicationTricyclic

antidepressantsMinor
tranquilizersMajor
tranquilizersLithium

carbonateUnipolar

(n =11)4/766.6

Â±7.110.6
Â±7.926.1
Â±4.711/11540Bipolar

(n =6)5/166.7

Â±5.89.8
Â±9.624.4
Â±3.81/6553

Values are mean Â±s.d. or number of patients.

present study was to estimate CBF abnormalities on brain
SPECT by group comparison of patients with depression with
normal control subjects, using this HBA system.

MATERIALS AND METHODS

Subjects
Eleven patients with unipolar depression (Unipolar) (mean

[Â±s.d.] age 66.6 Â±7.1 yr, range 59-77 yr), six patients with
bipolar depression (Bipolar) (mean age 66.7 Â±5.8 yr, range 61-77
yr) and nine age-matched normal control subjects with no sign or
history of medical or neurological disease and normal findings on
x-ray computed tomography (CT) of the brain (control) (mean age
65.7 Â± 10.5 yr, range 50-81 yr) underwent SPECT studies.

Clinical diagnosis of unipolar and bipolar depression was made by
psychiatrists according to DSM-IV criteria (18). Patients with
unipolar and bipolar depression were diagnosed as having DSM-IV
Major Depressive Disorder, Recurrent (296.3) and Bipolar I
Disorder, Most Recent Episode Depressed (296.5), respectively.
No patient had abnormal findings on brain x-ray CT, neurological
deficits or cerebrovascular risk factors (i.e., hypertension, diabetes
or ischemie heart disease). All patients were right-handed. Exclu
sion criteria were a past or present history of neurological or other
psychiatric disease; drug or alcohol abuse, or both; and use of
cerebral metabolic activator, vasodilator or dopamine-agonist med
ications and electroconvulsive therapy within 6 mo. All patients
were examined using the Hamilton Rating Scale for Depression
(79) and Mini-Mental State Examination (20) just before SPECT
studies (Table 1). All patients had had at least two prior episodes
of depression, and all were in a state of partial remission with
antidepressant medications (Table 1) and had residual symptoms at
SPECT study. Exclusion from neurodegenerative disorders, such
as frontotemporal dementia, was confirmed by a significant less
ening of cognitive impairment at clinical examinations during a
follow-up period of 1-2 yr after initial SPECT studies. Written
informed consent was obtained from each subject.

SPECT
SPECT scans were obtained 5-10 min after an intravenous bolus

injection of 925-1110 MBq 99mTc-labeled hexamethylpropylene-

amineoxime (HMPAO) as a CBF tracer (21,22). During injection
of HMPAO, subjects were in a supine position with eyes closed.
One SPECT scanner (SPECT-2000H, Hitachi Medico Corp., To
kyo, Japan) (23 ), a four-head rotating gamma camera with in-plane
and axial resolutions of 8-mm FWHM, was used for all measure
ments. The SPECT scan protocol acquired 64 projections at 20 sec
(20 sec X four-head camera = total 80 sec) per projection, with
360Â°rotation of the camera. Image reconstruction was performed

by filtered backprojection using a Butterworth filter (24), and
attenuation correction was made numerically by assuming an

ellipitic object shape for each slice and a uniform attenuation
coefficient (0.1 cm~') (25,26). Correction for scattered photons

was not performed. Image slices were arranged parallel to the
orbitomeatal line and obtained for 8-mm intervals through the
whole brain. After SPECT measurements, x-ray CT scans were
obtained with the same slices as for SPECT images in all subjects.

Data Analysis
Each subject's SPECT and x-ray CT images were transferred to

a Unix Workstation, Spare-Sun 10, where all data analyses were
performed.

Anatomic Standardization of SPECT Images. SPECT images for
each subject were transformed into the standard brain size and
shape using the HBA system (17). The anatomic structures of the
computerized standard brain atlas (i.e., contour of the brain, main
sulci and ventricles) were fitted interactively to each subject's

x-ray CT images using both linear and nonlinear parameters in
three-dimensional space. These parameters were subsequently used
to transform each subject's SPECT image into the standard atlas
form. Each subject's x-ray CT images were also transformed using

same parameters for confirmation of correct transformation into the
standard brain atlas form.

Statistical Analysis. After the anatomic standardization proce
dure, all subjects' SPECT images had the same anatomic brain

format. The radioactivities of each SPECT image were globally
normalized to 100 counts/pixel using whole-brain radioactivities.
Then, the mean and variance images of brain radioactivities were
calculated pixel by pixel for each group of subjects. From these
calculations, descriptive three-dimensional t-images of control
minus unipolar and control minus bipolar were calculated. In the
descriptive t-images, t-values over 2.10 and 2.16 were considered
statistically significant, corresponding to a significance level of
p < 0.05 (after Bonferroni correction for multiple comparisons) for
control minus unipolar or control minus bipolar.

RESULTS
The mean SPECT images for patients with unipolar and

bipolar depression and normal control subjects are shown in
Figure 1. The t-images of control minus unipolar and control
minus bipolar, illustrating areas oT significant changes are
shown in Figures 2 and 3, respectively. Significant decreases in
CBF in the unipolar depression group compared with the
normal control group were observed in the following regions:
the anterior aspect of the superior, middle and inferior frontal
gyri of the bilateral hemispheres; the right anterior cingulate
region; the anterior aspect of the left superior temporal gyrus;
the posterior aspect of the left superior temporal gyrus; and
anterior part of the insular cortex of the bilateral hemispheres (p
< 0.05) (Fig. 2, Table 2). Significant decreases in CBF in the
bipolar depression group were observed in following regions:
the anterior aspect of the superior and middle frontal gyri of the
bilateral hemispheres, the right anterior cingulate region, the
anterior aspect of the left superior temporal gyrus, the left
angular gyrus, the left lingual gyrus and the anterior part of the
insular cortex of the bilateral hemispheres (p < 0.05) (Fig. 3,
Table 2).

DISCUSSION
Our anatomic standardization technique allows intersubject

averaging of SPECT images and group comparison analyses on
a pixel-by-pixel basis. Enhanced detection of focal CBF
changes in the present series could therefore be made. This
technique should also prove useful for group comparison
analyses of brain SPECT images from patients with other
neurological and psychiatric diseases.
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The biologic cause of depression is unknown, despite the
many biochemical investigations that have been reported (27-
30). In the present study, both unipolar and bipolar depression
groups demonstrated significant CBF decreases, observed bi
laterally in the prefrontal cortices, the limbic system and the
paralimbic areas. These findings are consistent with several
previous reports (2,3,8,9,11).

It has been reported that the limbic system, particularly the
anterior cingulate, becomes activated in a special form of
attention in humans. A role for this region in attentional
processing has therefore been considered (31,32). Impaired
attention is a usual symptom in patients with depression, and it
could be argued that hypoperfusion in the anterior cingulate
might be related to this impaired attention. A role for the
anterior cingulate has also been reported in modulation of
emotion in monkeys (33 ) and at the interface between attention
and emotion in rats and cats (34). Depression is the major
illness of emotion, and the most characteristic symptom is a

FIGURE 1. Mean anatomically standard
ized SPECT images from patients with
unipolar and bipolar depression and nor
mal control subjects. Image slices were
transverse +1, +12 and +28 mm relative
to the anteroposterior commissure line. Trie
anterior is at the top of the Â¡mage,and the
subjects' right is at the left. The radioactiv

ities of each SPECT image were globally
normalized to 100 counts/pixel. Scale max
imum and minimum values are 150 and 30
counts/pixel, respectively.

depressed mood. Therefore, hypoperfusion in the anterior
cingulate might also be related to emotional impairment,
although this would contradict previous findings in humans that
this brain region does not create emotions (32,35).

In the present study, decreases in CBF were also observed in
the anterior aspect of the left temporal lobe and the anterior part
of the insular cortex of the bilateral hemispheres. These areas
are included in the paralimbic area. The significance of the
anterior part of the insular cortex has been investigated in terms
of cognitive and learning function in humans (36) and monkeys
(37). Cognitive impairments are often observed in patients with
depression, particularly elderly patients with "pseudodemen-
tia" (38). The patients with depression in the present study

were all elderly, and several had cognitive impairment that was
indicated by a low score on the Mini-Mental State Examination
(Table 1). Therefore, hypoperfusion in the anterior part of the
insular cortex might indeed be related to cognitive and learning
impairment. In addition, CBF decreases in the left anterior

t-map (Control - Unipolar)

-1-1mm +12 mm +28 mm

FIGURE 2. The t-image of control minus unipolar illustratingthe areas with
t-values over 2.10 (p < 0.05). Significant decreases in unipolar CBF were
observed in the following regions: the anterior aspect of the superior, middle
and inferior frontal gyri of the bilateral hemispheres; the right anterior
cingulate region; and the anterior part of the insular cortex of the bilateral
hemispheres. Image slices were transverse +1, +12 and + 28 mm relative to
the anteroposterior commissure line. The anterior is at the top of the image,
and the subjects' right is at the left. Scale maximum and minimum values are

5 and 0, respectively.

FIGURE 3. The t-image of control minus bipolar illustratingthe areas with
t-values over 2.16 (p < 0.05). Significant decreases in bipolar CBF were
observed in the following regions: the anterior aspect of the superior and
middle frontal gyri of the bilateral hemispheres, the right anterior cingulate
region and the anterior part of the insular cortex of the bilateral hemispheres.
Image slices were transverse +1, +12 and +28 mm relative to the antero
posterior commissure line. The anterior is at the top of the Â¡mage,and the
subjects' right is at the left. Scale maximum and minimum values are 5 and

0, respectively.

412 THEJOURNALOFNUCLEARMEDICINEâ€¢Vol. 37 â€¢No. 3 â€¢March 1996



TABLE 2
Coordinates of Pixels Where Significant CBF Changes

Were Identified

Coordinate*LocationAnterior

cingulateInsular
cortexPrefrontal

cortexX-3-36-3133-2027y48-420105655z1124122828t-valuetUnipolar2.754.21â€”4.213.143.17Bipolar2.53â€”3.094.163.053.08

'Coordinates x, y, z are in milliliters, measured from the anterior commis

sure, corresponding to the atlas of Talairach and Tournoux (60). Coordinates
are given in the order x (width), y (anterior-posterior) and z (height).

Unipolar and bipolar t-values correspond to control minus unipolar and

control minus bipolar, respectively (see text for explanation).

medial prefrontal cortex have been reported in patients with
depression versus those without cognitive impairment (12). It
has also been reported that paralimbic area activities are related
to emotional changes in humans (32) and in rats (39).

The prefrontal cortex is activated by selective attention
(40,41) as well as visual (42) and auditory (43) discrimination
and recognition in humans, and these findings suggest the
functions of the prefrontal cortex (32). It has also been reported
that some of the roles of the prefrontal cortex are involved in
short-term memory in monkeys (44-48) and motivation in rats

(49). The usual symptoms of depression (i.e., attentional and
cognitive impairment, depressed mood and inhibition of
thought) might be related to hypoperfusion in the prefrontal
cortex. In addition, connections between the rostralmost part of
the cingulate gyrus and the lateral prefrontal cortex have been
confirmed in monkeys (50) and, therefore, dysfunction of the
prefrontal cortex and the anterior cingulate might be recipro
cally related.

In the SPECT study, all patients were in a state of partial
remission of depression according to DSM-IV, as indicated by
relatively low scores on the Hamilton Rating Scale for Depres
sion compared with scores of patients with depression in
previous studies (Table 1). However, similar results (i.e.,
hypoperfusion in the anterior cingulate and prefrontal cortex)
were obtained. All patients had two or more previous major
depressive episodes. Despite antidepressant treatment for recent
major depressive episodes, they were in a state of partial
remission and had residual symptoms. In addition, they all were
elderly and had some degree of treatment resistance. It might
thus be possible to argue that elderly patients with refractory
depression show CBF abnormalities similar to those in patients
in the severely ill phases of depression, even though they are in
a state of partial remission with residual symptoms.

Antidepressant medication would affect these CBF abnor
malities. In the present study, the doses of antidepressant agents
were very small compared with doses in common use, and
therefore it was considered that the depressed mental state was
the main source of the CBF abnormalities. However, a con
trolled study of the effects of medication would be required to
confirm this conclusion.

The anatomic standardization technique allows for group
comparison analysis of brain SPECT on a pixel-by-pixel basis
but some technical errors may exist. The standard brain used in
the HBA system was obtained from 20-30-yr-old healthy
subjects (17). In the present study, the subjects were 66-67 yr
old on average. Because our subjects' brains showed slight

atrophy compared with the standard brain, misregistrations
might have occurred with transformation to the standard brain
format. For example, the size of the ventricles, including the
lateral, third and fourth ventricles, in the subjects' brains were

slightly different from that of the standard brain. Therefore, we
did not estimate CBF changes in the periventricular structures.

Technetium-99m-HMPAO, the tracer used in the present
study, shows backdiffusion from the brain (51-54) and limited
first-pass extraction fraction (55,56). These features must cause
the nonlinearity of brain radioactivities compared with that of
the true CBF. Underestimation of CBF has been argued to
occur, especially in high CBF regions (55,56), and a lineariza
tion method for CBF estimation using HMPAO has therefore
been proposed (57). However, because this linearization
method might enhance errors in SPECT data, we did not use it
in the present study.

In addition, scattered photons not removed in this study could
have caused errors in SPECT estimation of CBF (i.e., signifi
cant CBF changes were observed in areas outside the brain
parenchyma) (Figs. 2 and 3). These errors should be corrected
in the future (57-59).

CONCLUSION
The present investigation of abnormalities in CBF distribu

tion in cases of unipolar and bipolar depression on a pixel-by-
pixel basis using SPECT and the anatomic standardization
technique revealed decreased CBF in the prefrontal cortices,
limbic systems and paralimbic areas of both depression groups
compared with that in age-matched control subjects. These
findings indicate that dysfunction of these regions might be
related to the attentional, cognitive and emotional impairments
that are recognized as usual symptoms in depression. The
anatomic standardization technique should prove useful for
group comparison analyses of brain SPECT on a pixel-by-pixel
basis for other neurological and psychiatric diseases.
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