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The need for simple and accurate methods to measure renal
function is self-evident. This need increases as techniques for
intervention become available. The demand for evaluation of indi
vidual kidney function has increased with its role in the diagnosis and
follow-up of unilateral renal disease and in decision making for
conservative or surgical treatment based on residual renal function.
The role of nuclear medicine in this area has been inhibited by
confusion about conflicting methodologies. This report is meant to
provide guidance to those centers that would like to initiate clear
ance procedures but have difficulty in choosing appropriate meth
odology.
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creatinine concentration depends on muscle mass and
is not usually elevated out of the normal range until the
glomerular filtration rate (GFR) has fallen by at least 50%.
Endogenous serum creatinine clearance as a measure of GFR is
inaccurate (1,2}, especially when renal function is low (3) due
to a compensatory increase in tubular secretion, which limits its
validity as a glomerular filtration marker. Inulin clearance
remains the gold standard as a GFR tracer (4), but it is
expensive, time-consuming to measure and requires a steady-
state plasma concentration and urine collection for the greatest
accuracy. In addition, inulin has become increasingly difficult
to obtain.

Procedures for urinary clearance, which require the continu
ous infusion of radiopharmaceuticals and timed urine collec
tion, remain major methods for research purposes. In routine
practice, however, single-injection clearance methods (5),
which provide greater simplicity and sufficient accuracy to
meet clinical demands, are usually adequate.

The radionuclide agent of choice for GFR is 5lCr-EDTA

because its clearance is considered to be closest to that of inulin.
However, 99mTc-DTPA clearance correlates well with 5ICr-
EDTA (6). Some 99mTc-DTPA formulations have minimized

the serum protein binding of the tracer, which is responsible for
low plasma clearance (7-10). Both tracers seem reliable for
measuring GFR by plasma clearance when it is greater than 30
ml/min. DTPA is relatively inexpensive, provides a low radia
tion dose to patients and can be used for gamma camera
imaging. When only GFR measurement is required, 5lCr-

EDTA is an economic and practical alternative where it is
available.

Among the plasma clearance techniques, a growing need for
simplification has led to the replacement of multicompartmental
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models requiring multiple blood samples with single compart
ment models that need only two to three blood samples
(10,11-14). Further simplified techniques requiring only one
blood sample have also been developed. Several studies (15â€”
IT) have compared simplified one-sample methods with a
two-compartment method and reported that the Christensen and
Groth iterative method (using a single sample) is more accurate
(18). The level of inaccuracy of the Tauxe (Â¡9)method for GFR
was somewhat higher. A recent study from Li and Blaufox
reached a similar conclusion (20).

The single-sample methods have found a more limited
application in children, for whom different equations should
theoretically be used, taking into account the variations in
anatomic and biologic factors with age. However, Ham and
Piepsz (27) demonstrated that in children of various age, the
51Cr-EDTA clearance obtained by the two-sample method (2-4

hr) closely correlated with the 2-hr distribution volume. They
applied a linear equation obtained from the whole group and
found that the equation could be used to calculate renal
clearance in children of all ages, including infants. Groth et al.
(22) also have applied their method to pediatrie practice.

The level of renal function is an important determinant of the
overall accuracy in each method (23), particularly the single
sample ones which tend to be inaccurate when the GFR is less
than 30 ml/min (10,15). In the presence of overt renal insuffi
ciency, the method of choice remains the calculation of urinary
clearance (24), although delayed single-sample methods have
been suggested as an alternative (25).

The need for simplification has led to the introduction of a
gamma camera with external counting procedures that offer
both simplicity and the estimation of separate kidney function
as part of an imaging study. Two types of methods have gained
popularity: the first, developed by Piepsz (26) directly yields
milliliter per minute GFR as the ratio of the renal upslope to the
blood curve after calibration of the precordial curve with a
plasma concentration sample. The second one, popularized by
Gates (27), relies on the computation of early integral renal
counts (as a fraction of the injected dose), which is used with an
equation obtained by regression with creatinine clearance to
yield total and separate kidney clearances. Camera-based meth
ods are not as accurate as plasma-sample techniques, but their
reproducibility appears to be good and they may play an
important role in serial monitoring of renal function (28-30).
Careful attention to technical details is essential to avoid major
errors.

Background subtraction is particularly critical in some meth
ods, since intra- and extravascular activity is rapidly changing
(in opposite directions) during the time when individual func
tion is usually calculated and the contribution of each type of
activity varies within different regions of interest (31). More
over, the assumption that the precordial curve is representative
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of the blood disappearance curve is affected also by uncertainty
about the contribution of extravascular activity (31). The
empirical equations used in the formulas for background cor
rection will be valid as long as the original parameters are used,
including the type of background subtraction.

Variability in renal depth may influence the accuracy of
uptake calculations especially in the measurement of separate
kidney function. Differences in kidney depth greater than 2 cm
have been found only in 1.5% of patients in a recent series of
201 patients. Therefore, assuming an effective attenuation
coefficient for 99mTc of 0.12/cm, it is unlikely that a relative

uptake outside the range 60/40 will reflect differences in kidney
depth when the patient is imaged in the supine position (32).

Although GFR is more familiar to most clinicians, other
parameters can be used to monitor renal function. Effective
renal plasma flow (ERPF) has been estimated by radioisotopic
tracers to substitute for urinary clearance of para-amminohip-
puric acid. This reduces the time required for the study because
of faster clearance than GFR agents. Iodine-131-hippuran is still
the most widely used tracer for this purpose, particularly in the
simplified two blood sample or one-sample procedures (33,34).
Recently, the use of another tubular extracted tracer has been
proposed, mercaptoacetyltriglycine (MAG3), which has the
advantage of being labeled with 99mTc and is more suitable for

renal imaging (35). MAG3 underestimates hippuran clearance
by 30%-40% presumably because of its high protein binding
which makes its glomerular filtration negligible and also may
limit tubular extraction (36-38). Formulas have been derived to

obtain ERPF with MAG3, by the use of regression equations
derived from paired-tracer studies. Gamma camera methods
have also been developed (38). The renal clearance of a pure
tubular agent is important irrespective of the possibility of
estimating ERPF. Bubeck et al. (39) proposed to describe the
clearance of MAG3 as the tubular extraction ratio (TER) to
emphasize the potential role of this agent in the follow-up of
nephrological diseases in which tubular function is impaired.

More recently, 99mTc-N,N-ethylenedicysteine (99mTc-EC)

has been introduced by Verbruggen et al. (40) as an alternative
to MAG3 The molecule shares with MAG3 the property of
being actively extracted by the tubule, but, due to a lesser
degree of protein binding, it has a more rapid plasma clearance
rate which approaches that of hippuran. The new radiopharma-
ceutical is easily prepared at room temperature, without the
boiling step necessary for MAG3. Preliminary clinical studies
(41,42) indicate a close similarity between EC and MAG3 both
in renographic curves and renal imaging quality.

RECOMMENDATIONS FOR AN APPROACH TO RENAL
CLEARANCES IN NUCLEAR MEDICINE: TECHNIQUE
CHOICES

It is recommended that researchers use the full disappearance
curve or a continuous infusion with urine collection for the most
reliable estimate of renal clearance. It should always be noted
that plasma clearances are indirect and subject to nonrenal
variations. In comparison, urinary clearances have the advan
tage of being direct but subject to problems with urine collec
tion.

Clinical
In a patient with GFR > 30 ml/min, the single-sample

technique is adequate. If the GFR is <30 ml/min, the primary
technique should include urine collection. Urine collection also
is indicated in patients with ascites or edema or another
expanded body space.

Secondary Technique. A 24-hr specimen using a single-

sample technique can be substituted for urine clearance in
patients with renal failure. This is discussed below.

RECOMMENDED AGENTS

GFR
Primary Agents.Techneuum-99m-DTPA, which requires

standardization since protein binding varies among different
manufacturers and will affect the technique and the need to
measure protein free filtrates and 51Cr-EDTA which may
provide more accurate values for GFR than 99mTc-DTPA, but

has the disadvantage of poor imaging characteristics and lack of
commercial availability in the United States.

Secondary Agent. The only secondary agent recommended at
this time is [125I]iothalamate. However, iothalamate, an ionic

high-osmolar contrast agent, is no longer approved for intra-
vascular use in Denmark, New Zealand or Ontario.

Effective Renal Plasma Flow. ERPF values can be achieved
by using I23I-, 131I- or 125I-orthoidohippurate.

Tubular Function. Technetium-99m-MAG3 should be used

to assess this parameter.

METHODS OF MEASUREMENT

GFR
We recommend that the preferred technique for clinical

measurement of GFR be based on the Groth 4-hr methodology.
The equations for calculating GFR have been modified by
Watson (76) and may be used as shown in the Appendix.

Effective Renal Plasma Flow (Hippuran)
We recommend that the Tauxe method (34) for measuring

ERPF be utilized. The optimum time for a single sample is at 44
min, but the use of a time between 39-49 min will yield
acceptable results. The equations and constants for these times
are shown in the Appendix.

Tubular Function (MAG3)
We recommend the use of the Bubeck approach (43) or the

Russell equations (44). Russell's approach uses two samples

that may provide some additional accuracy under certain
circumstances. In most cases, we believe that a single sample
would suffice. Like the ERPF measurement, blood sampling
should be performed between 39 and 49 min postinjection.
Other methods that have been described by Taylor, Piepsz,
Muller-Suur and others may also be suitable but are not
referenced here. The purpose of this report is to provide
guidance in choosing a technique but not to exclude alterna
tives.

Combined Function
For the measurement of a combined GFR and ERPF value,

we recommend that a sample be obtained at 44 min to estimate
ERPF and a second sample be obtained at 2-3 hr to provide the
additional time sample for GFR. The 44-min sample should be
used to calculate ERPF or tubular extraction and the 44-min
plus the 2- or 3-hr sample be used with the slope technique to
determine GFR (20).

Urine Collection Techniques
Urine collection techniques should be used for patients with

severely reduced renal function or in situations where there may
be a third space and indirect clearance techniques are not
reliable. It is extremely important to note that if there is a
nonrenal site for the radiopharmaceutical to enter, any plasma
clearance will overestimate the true value.

If a urine collection technique is utilized, urine should be
collected at 2-3 hr and 3-4 hr with blood samples at 150 and
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TABLE 1
Minimum Recommended Doses for Clearances Without Imaging

in a 70-kg Person

Tracer Megabecquerels Millicuries

Technetium-99m-DTPAChromium-51
-ETDA1231,

1251,131l-orthoiodohippurateTechnetium-99m-MAG311220.0270.0270.0540.054

210 min. High urine flow rates are critical. Corrections for
sampling time should be made by drawing the slope and
estimating the correct sample value. If urine collections are
made, residual urine should be estimated if possible. If residual
urine is not estimated the potential error may be quite high.

A study of patients with reduced renal function (45) reported
that the GFR corrected for residual urine was 56.1 Â±6.6 (s.e.)
ml/min compared to 61.8 Â±7 uncorrected.

Correction for Body Size
We recommend that the plasma concentration of the samples

be corrected to a concentration expected for an individual of
1.73 m2 for adults and children in both hippuran and MAG3

studies (43,46). For measurement of GFR in individuals who
are greater than or equal to 1.4 m2, the Groth equations are

acceptable but may be improved by surface area correction. It
has been suggested that the equations of Ham (21) should be
used in people less than 1.4 m if the clearance is greater than
30/ml/min/1.73 m2. An alternative approach, still widely used,

is the two-sample method with blood samples at about 2 and 4
hr. See the Appendix for special considerations in reference to
children.

Individual Renal Function
The preferred technique for the measurement of individual

renal function utilizes camera counts between 1 and 2 or 2.5
min for OIH, MAG3 or OIH. We recommend that any activity
less than 1 min should not be included in the determination of
individual renal function, since this represents a significant
amount of nonrenal radioactivity. In well-hydrated patients,
activity may leave the renal area by 2.5 min or even sooner.

Secondary Technique. A secondary technique recommended
for individual renal function measurement utilizes 99mTc-
DMSA uptake at 2-4 hr; or 99mTc-glucoheptonate at 2-4 hr can

be used unless obstruction is present which is a contraindica
tion. It is recommended that if any renal pelvic activity is
demonstrated at 2 hr on any of these studies, the study should
definitely be extended to 4 hr.

"DMSA does not use the same transport mechanism as OIH
or MAG3 (47-49). Yee et al. (47) showed that dehydration,
mannitol diuresis and changes in urinary pH influence the
DMSA biodistribution. The renal uptake of DMSA decreases
by 50% and the kidney-to-liver ratio falls from 35:1 in control
rats to 5:1 in rats with acid urine. Also, in patients with
proximal tubular acidosis, substantially lower renal DMSA
uptake has been demonstrated (50,51). In experimental studies,
gentamycin and cysplatin toxicity has been shown to impair
renal uptake (52)".

Background Subtraction
We could not reach a general consensus on background

subtraction. Therefore, we recommend that individual centers
decide whether or not to subtract background, but realize that
the results be carefully tracked to determine if the background
subtraction technique being used is providing appropriate re
sults (54).

GENERAL CONSIDERATIONS
We recommend that the patients be well-hydrated. The ideal

technique would be to determine the specific gravity and
hydrate the patient to a specific gravity of less than 1.020.
Whether or not this is done, the patients should receive
approximately 5-6 ml/kg of fluid before the clearance study.

Renal Failure. In patients with reduced renal function,
alternatives to urine collection may be used (55), although the
majority of committee members preferred urine sampling at low
levels of renal function. These alternatives are:

Estimated GFR 15-30 ml/min - blood sampling between 3

and 5 hr postinjection.
Estimated GFR < 15 ml/min - blood sampling between 5

and 24 hr postinjection or only 24 hr postinjection.

These sample times are appropriate for adults only. For a rough
estimate of the appropriate time for drawing the blood, the
nomogram advocated by Kamper et al. (25) is recommended.
This estimate takes the weight, age, sex and serum creatinine
level into consideration. The use of the equation can be avoided
by drawing a blood sample at 24 hr instead (Table 1).

APPENDIX

Calculation of the Renal Clearances

Single-Sample Methods

GFR. The following approach to measurement of GFR with
single sample is taken from a letter to the editor by Watson (16).

The basic equation for single-sample measurement of clearance is:

Cl = - ln(ECV/Vt) â€¢ECV/(t â€¢ Eq. 1

Cl = total 5lCr-EDTA (or 99mTc-DTPA) plasma clearance in

ml/min; ECV = extracellular volume in ml = 8116.6 â€¢surface area
(m2) â€”28.2; V, = tracer distribution volume at time t, in ml; and

g(t) = (0.0000017t - 0.0012) â€¢Cl(-0.000775t + 1.31).
If this equation is rewritten as: Cl â€¢t â€¢g(t)+ln(ECV/Vt) â€¢ECV =

0 and we assume t = 240 min, for instance, the equation becomes:
-0.1901 Cl2 + 269.8 Cl + ln(ECV/V240) â€¢ECV = 0.

This is a simple quadratic equation and is analogous to the
standard form, ax2 + bx + c = 0, with its two solutions:

x=(-bÂ± 4ac)/2a = ( - b/2a) Â± Eq.2

The values a and b are constants for a given time t, while c is
calculated from the measured distribution volume at time t and the
predicted ECV.

Table 1 lists values of a, b and c at different values of t.
To calculate the total plasma clearance, the above values are

introduced into the following formula:

Cl = ( - b/2a) + Eq. 3

The first item on the right-hand side of the equation is positive
and greater than 650 ml/min for t > 180 min, i.e., unphysiologi-
cally high for GFR. Therefore, since a is negative, only the positive
value of

vb2 - 4ac

need be considered in the second term.

TABLE A1

Eq. 4

T(min)180

240
300a-0.1609

-0.1901
-0.2070b210.7

269.8
323.4cIn

(ECVA/180)â€¢ECV
In (ECV/V240)â€¢ECV
In (ECV/Vaoo)â€¢ECV
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Total plasma clearance values can be easily obtained using a
pocket calculator or a very simple computer program without the
complicated iterative procedure required in the original Groth
equations.

In Children. Ham's formula developed for 51Cr-EDTA
(and probably applicable for 99mTc-DTPA) is GFR = 2.602
P120â€”0.273,where P120 is the plasma concentration at 120 min

postinjection, expressed as the percent injected dose per liter.
Since blood sampling does not occur exactly at 120 min, a small

correction factor was introduced, which is valid only if blood
sampling occurs in the range of 110-130 min postinjection:

Pl20 â€” _(.008)(t-l20)

where t is the blood sampling time (1 10-130 min) and P(t) is the

plasma concentration at that time. The final GFR result has to be
corrected for body surface area.

Effective Renal Plasma Flow
Tauxe's formula (34) for hippuran at 44 min postinjection, modi

fied for normalized plasma concentration is:
ERPF = 1126.2 (1 - e-0008Â«1001"-78))ml/min/1.73m2. Eq. 5

For variable blood sampling times:
ERPF = Fmax(l - e-a(ID/Cn'-V1^) ml/min/1.73 m2.

Fmax= 2501.3 - 108.lt + 2.656t2 - 0.0206t3.

a = 0.0236 - 0.00035 t.

Vlag = 3.897 + 0.3t - 0.0048t2.

Tubular Function
Bubeck's formula (43) is:

TER(MAG3) = a + )3 ln(ID/Cn,) ml/min/1.73 m2 Eq. 6

where a = - 517 e-Â°-011Mand ÃŸ= 295 e"0016"'.

The formula for 44 min is:
TER(MAG3) = -318.6 + 145.9 ln(ID/Cnt) ml/min/1.73 m2.

where ID = injected activity dose (cps); C = time-specific plasma
concentration (cps/liter); Cn = C â€¢BS/1.73 m2 = normalized
plasma concentration [cps/liter/ 1.73 m2]; and t = time of blood

sampling postinjection (min).
An alternative is the use, in children above 1 yr, of a specific

pediatrie algorithm, developed by the European Pediatrie Task
Group [Piepsz et al. (59)]:

Tc-MAGS clearance = _a(,_35)+ B, Eq. 7

where A = 665.89, P(t) = plasma concentration(%ID/liter), a ~
0.0298512, t = any time between 30 and 40 min and B = 1.89.

The result of the clearance has to be corrected for body surface.

Two-Sample Method (2,3)
This method is only required when special accuracy is needed

(i.e., for investigational purposes). This method requires the with
drawal of a 90- or 120-min blood sample in addition to the 240-min
sample. Each sample should be processed immediately after
withdrawal as described previously. The data are calculated as
follows:

D In (P,/P2) (T,lnP2) - (T2lnP,)
GFR = â€” =râ€”exp

Tj-T, T2-T, Eq. 8

where D = dose activity (cpm); P, = activity at T,; P2 = activity
at T2; P, and P2 are in counts/min/ml (if an ultrafiltrate is used, then
this must be multipled by 0.94).

In adults, two specific correction factors can be used for having
neglected the first exponential.

The first and easiest type of correction is the Chantler's (56)

linar correction:

Cl, = 0.93 X C12)

where Cl, is the clearance corrected for the first exponential and
C12is the noncorrected clearance.

The second type of correction is the Brochner-Mortensen's (57)

quadratic correction:

Cl, - 0.99 X C12- 0.0012 X C\\,

where Cl, is the clearance corrected for the first exponential and
C12is the noncorrected clearance.

In children, similar correction factors, adapted to pediatrie ages,
can be used:

For example. Chantler's linear correction.

Cl, - 0.87 x C12,

where Cl, is the clearance corrected for the first exponential and
C12is the noncorrected clearance.

The Brochner-Mortensen's quadratic correction (57):

Cl, = 1.01 X C12- 0.0017 X C12,

where Cl, is the clearance corrected for the first exponential and
C12is the noncorrected clearance which should first be corrected
for body surface using the Brochner-Mortensen algorithm.

Complete Plasma Curve
1. Obtain patient's height and weight.

2. Prepare a standard of the radiopharmaceutical to be used (see
below).

3. Inject a known amount of radioactivity into the patient's arm.

4. Draw blood samples from the opposite arm at 5, 10, 15, 20,
30, 40, 60. and 90 min postinjection for tubular agents. For
GFR agents, continue to sample at 120, 150 and 180 min.

5. After each sample is drawn, separate the plasma by centrif-
ugation and withdraw 2 ml for counting.

6. Optional: If 99mTcDTPA is used to measure GFR, place an
aliquot of the plasma into a Centrifree' micropartition tube to

remove any activity that remains protein bound. Count 100 to
200 Â¡Â¿Iof the filtrate and determine protein binding. If it is Ã¤
10%, the results may be spurious and a correction for protein
binding may be necessary (58).

Because normal human plasma is 94% water and 6% protein, when
the protein is filtered out of 1 ml of plasma, only 0.94 ml of
ultrafiltrate remains. This gives rise to the factor of 0.94 in the
above equation when ultrafiltrate is used in place of plasma.

The multiple blood sample clearance can be fit by a two-
exponential model.

Clearance (ml/min) = (dose injected)(bi)(b2)/((A,)(b2)

where A, and A2 are the y-axis intercepts of each exponential
component and b, and b2 are the respective slopes (0.693).

Procedural Details
Materials Required for Clearance Measurements:

Radiopharmaceutical
50 ml volumetric flask
100 ml volumetric flask
125 ml plastic bottles w/caps (2)
Marking pen
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Glass counting vials (2)
1 ml tuberculin syringe (1)
Eppendorf, clay adams or equivalent pipette
Water
Baxter minivolume extension set (T-Connector, 15 cm) (Baxter
Healthcare Corporation, Deerfield, IL 60015)

Preparation of Technetium-99m Standards for Clearance
Measurements

1. Using the marking pen, label the 50 ml volumetric flask
with the following information: Stock Solution (Date).

2. Fill the 50-ml volumetric flask half full of water.
3. Use a tuberculin syringe to withdraw an aliquot from the

radiopharmaceutical solution. Do not exceed 1.5 mCi or
well counter deadtime count losses may occur.

4. Add water to bring the syringe volume to 1.0 ml.
5. Assay this syringe in the dose calibrator and record the

activity in the syringe as the Activity of standard on the
Worksheet. Use military time; i.e.,1:20 p.m.should be re
corded on the WORKSHEET and entered into the computer
as 13:20.

6. Transfer the syringe contents, flushing at least once into the
volumetric flask; then fill the volumetric flask with water to
the 50 ml level. Cap the volumetric flask, shake gently for
at least 5 sec and attach a radioactive materials label.

7. Assay the emptied syringe in the dose calibrator to deter
mine residual activity. Again, note the Time and measured
Residual syringe activity on the worksheet.

8. Label the 100-ml volumetric flask with the following label:
(Radiopharmaceutical) Standard Solution (Date).

9. Fill the 100-ml volumetric flask half full with water.
10. Carefully pipette (use an Eppendorf pipette or equivalent)

1.0 ml of the current Stock Solution into the 100-ml
volumetric flask labeled Standard solution. Note: To ensure
accurate pipette volume delivery, the tip must first be
primed by drawing and expelling solution. Do not attempt to
mix the solution using the pipette tip as stirrer.

11. Fill the flask to 100 ml with water, cap the flask and shake
gently for 5 sec and attach a radioactive materials label.

12. Carefully pipette (use Eppendorf pipette or Clay Adams
pipette or equivalent) 1.0 ml of the current Standard
Solution into a glass counting vial. Use a clean pipette tip.
Do not use the same pipette tip as was used in step 10. Cap
the vial tightly and label as "(Radiopharmaceutical) STD #1
(Today's Date)."

13. Repeat step #12 for STD #2.
14. Repeat step #12 STD #3.
15. Set counting vials aside for later counting with plasma

samples.
Note: These three Standard Count Vials (STD #1 and #3) are to
be recounted for each clearance measurement performed on that
same day. Substantial variations in counts between standards
indicates a pipetting error and new standards should be made up.

Procedure for Dose Injection

1. Start an i.v. and attach a very short piece of tubing with an
injection port such as the Baxter minivolume extension set
(T-Connector, 15 cm) (Baxter Healthcare Corporation,
Deerfield, IL 60015).

2. Attach dose to a three-way stopcock which has a 10-ml
saline syringe attached to one of the ports and contains
approximately 10 cc of 0.9% saline for injection.

3. Inject the dose through the three-way stopcock.
4. Flush the dose injection syringe twice by drawing saline into

the dose syringe and injecting into the patient. This will be

followed by injecting the remainder of the saline through the
three-way stopcock.

5. Remove and assay syringe, stopcock and i.v. tubing for
residual activity.

Procedure for Blood Sampling

1. The injection site should not be used to obtain the blood
sample.

2. Insert an i.v. line for drawing blood into the vein, preferably
using a 18-20 gauge syringe to minimize hemolysis.

3. Attach a three-way stopcock to the i.v. line.
a. Attach a 10-ml syringe containing heparinized saline.

b. To the third port, attach a syringe for the blood sample.
4. Depending on the flow through the three-way stopcock,

approximately 45 sec before the time the blood sample is
needed, start to withdraw blood back into the heparinized
saline syringe to clear the line of heparin.

5. After approximately 15 sec, switch the stopcock so that
approximately 5 ml of blood can be withdrawn into the
blood sample collection syringe.

6. Withdraw blood, timing it so that the midpoint of the blood
collection is at the time the sample was collected. If it is not
at the correct time, record the ACTUAL TIME when the
midpoint of the sample was obtained.

7. At the end of the blood draw, switch the three-way stopcock

back so that heparinized saline can be injected back into the
patient. Inject approximately 5 ml of heparinized saline to
clear out the stopcock and the tubing.

8. The blood should be injected into a tube containing ACD
(anticoagulant citric dextrose) or heparin to prevent clotting.

9. Clean out the three-way stopcock with sterile cotton swabs
to remove any residual blood and radioactivity.

10. Replace as necessary the heparinized syringe with a new
syringe containing heparinized saline.

11. Repeat the procedure for all subsequent blood samples.
12. The anticoagulated blood should be injected into a

centrifuge tube and spun to separate the red cells from the
plasma.

13. An Eppendorf pipette (or equivalent) should be used to
pipette 1.0 ml of plasma into the counting vial. Do not
distrub the interface between the plasma and red cells. If
enough plasma remains, pipette a second sample.

14. For GFR measurements, it may be necessary to utilize
protein free ultrafiltrate using the Centrifree' micropartition

centrifuge tube (Amicon Centrifree Micropartition System,
Amicon Corp., Danvers, MA).

Procedure for Ultrafiltration (Optional)

1. Fill Centrifree micropartitiion tube assembly with approxi
mately 1 ml of plasma.

2. Place filled device in fixed-anglehead centrifuge. Be sure

centrifuge is balanced.
3. Centrifuge for 15 min at a speed not to exceed 2000 g. Note:

The Centrifree apparatus must be centrifuged in an angle-
head centrifuge because a swinging bucket head will result
in inadequate filtration.

4. When centrifuge stops, remove the filtrate cup containing
the clear, colorless ultrafiltrate and pipette immediately.
Pipette 100 ju.1from each assembly into test tubes labeled
ultrafiltrate. Cap each tube and count immediately. Record
counts and the time each sample was counted.
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Simplified GFR Measurement
Quality Control:

1. The standard and ultrafiltrate activities (if any) should be
corrected for decay.

2. Background activity should be measured and subtracted from
each standard.

3. The three separate standards should be averaged to get a final
value.

Caution
Well counters can easily be overloaded by the levels of

radioactivity used for imaging techniques. This must be avoided
by diluting the sample, decaying it, or using small aliquots.
Depending somewhat on the instrument, no more than perhaps
0.3 jiCi should be placed in the counter. One way to achieve
this is to dilute a duplicate of the dose to 100 ml in a volumetric
flask, transfer 1 ml ofthat to a second 100 ml volumetric flask,
and then count 0.1 ml of both the twice diluted dose and the
patient's plasma.

Sample Worksheets
See pages 1894 and 1895.
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