
alus can produce metabolic patterns that are supposedly
â€œtypicalâ€•of Alzheimer's disease (AD) (10,11).

Because of the large numbers of regions of interest
(ROIs) in a typical PET data base, identification of either
discrete abnormalities or patterns of abnormality for a
patient group compared to a control group has posed some
statistical challenge. PET studies are expensive and involve
radiation exposure, and because PET itself has not been a
commonly available methodology, relatively few subjects
in patient and control groups have been studied. Further
more, intrinsic variability and methodological artifacts
result in considerable inter- and intrasubject variability.
Multicolinearity or interdependence between brain regions
also presents problems in investigating regional differences
between groups. These problems have been addressed to
some extent by normalization of regional values to some
reference region(s) (9,12), by the use of multivariate ap
proaches (13), by discriminant-function analysis (14) and
by a â€œscaledsub-proffleâ€•model (15). These different meth
ods of analysis have value for identifying single or groups
of brain regions that have the greatest differences between
subject groups (best discriminators) or for identifying a
distinctive profile of regional function that characterize a
disorder. AD and other memory disorders are heteroge
neous, however, and there is growing evidence of multiple
sub-types within the AD disease category (16-19). This
evidence indicates the need, which has not yet been met,
for a PET analysis method which has the ability to recog
nize and employ multiple discriminating profiles that will
serve to identify certain disorders on PET scans.

PET scan classification methods can vary from interpre
tation by a human reader to more automated methods, as
shown in Figure 2. Certain artifacts, such as those pro
duced by a lateral tilt of the brain, can be suspected and
taken into account more readily by a human expert than
by currently-available computerized methods. Needless to
say, the performance of a human reader will depend on
that reader's level of expertise and experience in reading
PET scans.

To evaluate a quantitative classification method ade
quately, cross-validation studies must be performed. This
involves â€œtrainingâ€•the classifier with one group of subjects,

The valueof PET as an objectivediagnostictoolfor dementia
may depend on the degree to which abnormal metabolic
patterns can be detected by quantitative dassification meth
ods. In these studies,a neural-networkdassifler basedon
coarse region of interest analyses was used to dassify normal
and abnormalFDG-PET scans. The performanceof neural
networks and of an expert reader were evaluated by cross
validation testing. When the â€˜abnormalâ€•dass was repre
sented by subjects with dinical diagnoses of PrObableAlz
heimer's,â€•the areas underthe relafive-operating-charactens
tic (ROC)curveswere0.85 and 0.89 for the neuralnetwork
and the expert reader, respectively. When testing with abnor
malsubjectsrepresentedby â€œPossibleADâ€•cases,ROC areas
for both the networkand the expert were 0.81. The neural
network out-performed disctiminant analysis. It is conduded
that PET has potentialfor the detectionof abnormalbrain
function in dementing diseases, and that the combination of
neuralnetworksand PETis a usefuldiagnostictool. Despite
the low-resolution â€˜viewâ€•afforded the neural network, its
performance was nearlyequivalent to that of an expert reader.

J NucI Med 1992; 33:1459â€”1467

ositron emission tomography (PET) scan studies in
dementia have shown so-called â€œtypicalâ€•patterns of ab
normality, such as bilateral parieto-temporal hypometab
olism, asymmetrical hypometabolism and predominantly
frontal hypometabolmsm(1-9) as shown in Figure 1. These
â€œtypicalâ€•patterns appears in many (usually advanced)
cases of different neurological disorders, and it is often
possible to show significant differences in PET scan pat
terns on a group basis (e.g., differences in mean values of
particular regions, or ofratios ofmean values to a reference
region, for a given disorder), but reliable case-by-case
classification of subjects remains difficult. Disorders such
as Parkinson's dementia and normal pressure hydroceph
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and testing it on a separate group, which will measure a
classification method's ability to perform on new and
independent data sets. Re-substitution experiments, in
which testing is performed on the group used to â€œtrainâ€•
the classifier, can be used to demonstrate theoretical limits
of the classifier's performance as the number of experi
mental subjects increases(20), but they do not give realistic
estimates ofa classifier's performance in a practical setting.

The introduction of a group of computational algo
rithms known collectively as â€œartificialnetworksâ€•has stim
ulated great interest within the field ofpattern recognition
(21â€”23).In these algorithms, individual processing ele
ments, analogous to biological neurons, receive weighted
averages of inputs from other processing elements. As in
biological networks, a transfer function is applied to this
weighted average, and the results are fed to other process
ing elements. The recent development of methods by
which connection weights can be adjusted so that networks
can â€œlearn,â€•by example, how to classify patterns, has
made this technique particularly valuable. The introduc
tion ofthe generalized delta rule (21) for use in semi-linear
networks enabled the realization of computer programs
implementing a multilayer neural network (the back-prop
agation network) that could perform impressive feats of
â€œlearning.â€•

Though neural network training is strictly a â€œsupervised
learningâ€• process, the learning is essentially by example,
with no guidance from the user as to the criteria to employ.
The network is allowed to learn what it â€œbelievesâ€•to be
the most important discriminating features, and to weigh
those features appropriately for best classification perform
ance. The weight vectors associated with individual hidden
units can quite legitimately be thought of as â€œfeature
detectors,â€•since the weighted-average input to each hidden
unit represents a covariance or correlation-type calcula
tion. In the sense that it applies multivariate profiles to
PET data, the back-propagationnetwork approach is con
ceptually similar to the methods ofothers (14,15,19). The
nonparametric and nonlinear aspects of neural networks,
however, offer potential advantages.

Neural networks are beginning to find applications in
many fields, including the field of medical imaging (24-
29). A neural-network classification system for fluoro
deoxy-glucose (FDG) PET scan data is described here, and
its applicability in separating normal from abnormal FDG
PET scans is evaluated.

MATERIALSANDMETHODS
Patients with dementia or memory disorders were recruited

for brain imaging studies at the Wien Center for Alzheimer's
Disease and Memory Disorders, Mount Sinai Medical Center,
Miami Beach. Normal young and elderly subjects were also
recruited from the local community. Recruitingproceduresare
described in detail elsewhere (8).

Resting-state (supine, awake, eyes closed and blindfolded in a
quiet, darkened room) PET scans were obtained using a PElT
V scanner (30) (seven simultaneous slices, 15 mm apart, with

FIGURE1. PETimageillustratingparieto-temporalasymme
tnes and bilateral pareto-temporal hypometabolism.The plot
givesresultsof a AOl analysisof the PET studyshownabove,
i.e., CMRgIcin the four bilaterallobesof the brain (right and left
frontal,panetal,temporal,occipital).

FIGURE 2. A selectionof PET classificationmethods.Infor
mationfroma PET study(eitherthe imagesthemselvesor the
resultsof quantitativeanalyses)can be usedto â€œdiagnoseâ€•ab
normalities.Intuitivevisualinterpretationsbytrainedexpertscan
be powerful,but are inherentlysubjective.Certainâ€œrulesâ€•regard
ing patterns of deficits or assymetry may be formalized to con
stitute a â€œrule-baseddassifier.â€•Quantitative,statistical versions
of these types of rules,or approachessuch as discriminant
analysis,maybe usedto forma â€œstatisticalclassifier.â€•Alterna
tively,neuralnetworksmaybetrainedto indicateabnormalities.
The relevantquestionis: giventhe samePETscan,will the
differentmethodsagree?
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Group1Group2â€œADâ€•

class:â€œProbable ADâ€•â€œPossibleâ€•ADN4139Age70.9

Â±8.8(range:53â€”93)73.6 Â±9.4 (range:51â€”96)Mini-Mental
statusexamscoreGender(M,F)15.0Â±7.3

21,2019.0Â±8.018,21â€œNormalâ€•

class:Age-Equivalent NormalsAge-EquivalentNormalsN5050Age67.7

Â±8.9(range:50â€”84)67.7 Â±8.9(range:50â€”84)Gender(M,F)25,2525,25Note:

â€œNormalsâ€•includesomesubjectswithsmallMRlesions.

inpiane and axial imageresolutionof 15mm FWHM). Patients
were injected with 3-5 mCi of['8flFDG, and scanswere obtained
30 mm later for a lengthof time sufficientto obtain2 x 106
counts in the highest count slice. â€œArterializedâ€•venous blood
was collected in order to measure plasma radioactivity and glu
cose (31). Regional cerebral metabolic rate ofglucose (rCMRglc)
values were calculatedusing standard rate constants, a lumped
constant of 0.42 and an operational equation (31). Data were
analyzed for 67 ROIs in the brain, using previously-published
methods (13,32â€”34).For each region, the averagemetabolism in
absolute values of rCMRglc in mg/lOO g/min was determined.
Values were also calculated for 12 larger bilateral lobular regions
and 4 bilateral lobar regions (frontal, parietal, temporal and
occipital).

Classification performances were evaluated for two groups of
subjects.All subjectshad been clinicallydiagnosedaccordingto
current NINCDS-ADRDA criteria(35), and the clinical diagnosis
wasusedas a reference.Eachgroup containedtwo classes:â€œADâ€•
subjectsand age-equivalentnormal subjects.The AD classwas
represented, in the first group, by subjects with a clinical diagnosis
of â€œProbableADâ€•,and in the second,by subjectswith â€œPossible
ADâ€•as defined by NINCDS-ADRDA criteria (it was expected
that PET-based diagnosis would be somewhat more difficult for
the Possible AD group). Approximately half of the patients di
agnosed as Possible AD had met all the criteria for Probable AD,
except for being insufficiently cognitively impaired to be labeled
as demented. The remaining Possible AD patients were those
who were demented but had other medical conditions that could
independentlyproducesome mental impairment, so as to make
the diagnosis of AD less certain. Table 1 summarizes the com
position of the two groups.

Three classification methods were compared. The first method
consisted of classification by a human expert. An expert reader
(RD),whowasblindto individualclinicaldiagnoses,examined
each PET scan for signs of abnormality and assigned a grade of
abnormality from 0 through 5 (0 = completely normal, I =
questionable deficit present, 2 = mild deficits, 3 = moderate
deficits, 4 = severe deficits, 5 = severe widespread deficits). A
threshold-type decision criterion was then applied to each subject.
The resultsof the human expert were compared to the resultsof
two quantitative classifier methods, both of which were trained
with eight-dimensional patterns (eight lobar metabolic values)
resulting from ROl analyses of individual subjects. One quanti

tative method was a discriminant analysis technique (36), as
implemented in the SAS statisticalpackage(37), in which the
discriminant function obtained for a â€œtrainingsetâ€•was applied
to patterns within a â€œtestingsetâ€•.The SAS procedure employed
an optimization strategy which used either linear or quadratic
discriminant analysis, depending on the results of tests of the
intra-class and pooled covariance matrices (38). The second
quantitative method was the back-propagation artificial neural
network. Both cross-validation and re-substitution studies were
performed for the quantitative methods.

Comparisons of the three methods were made on the basis of
â€œrelative-operating-characteristicsâ€•(ROC) analyses (39â€”42),in
which the area under the ROC curve was used as the figure of
merit.The ROC areameasuresa diagnosticsystem'sperformance
at several different seuings of the decision criteria, and is a more
complete representation of a diagnostic system's performance
than, for example, the report of a single pair of sensitivity and
specificity values. It can be shown (42) that the area under the
curve corresponds to the probability of a correct response in a
two-alternative forced choice test, in which a classifier is presented
with one sampleof each of the two possiblealternatives(in this
case, normal or abnormal), and is forced to say which is which.

Figure3 is a conceptual representationof the neural-network
classificationsystem.ROl data, based on rCMRglcin the eight
(four right and four left) lobes served as an eight-dimensional
input to the neural network. Neural network training was per
formed using back-propagationtechniques describedelsewhere
(21,22). By presenting examples ofeach class (in this case, results
ofROI analysesofnormal and AD PET scans) at the input layer,
comparing the calculated output of each output-layer unit with
the target values for that class, and then adjusting the internal
weights so that the calculated outputs would then be closer to the
target values, the network learned to define appropriate decision
boundarieswithin the input space.Once a networkwas trained
in this way, â€œunknownâ€•patterns were classified by presenting
input patterns at the input layer. For the two-classproblem, a
single output unit indicated the classification, according to a
selected threshold criterion. The network was trained so that the
output of this unit was â€œhighâ€•(close to 1) for normal patterns
and â€œlowâ€•(close to 0) for abnormal patterns. Target values used
for training were thus either 1 or 0, for normal and abnormal
subjects, respectively. For one iteration, the entire group of cx
amples was presented, and the error at the output layer was

TABLE I
Compositionof the Two GroupsUsedto Test ClassificationPerformance
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nation), two different cross-validation configurations were used
to obtain each averagedROC curve. The normal controls used
for training in the first configuration were used for testing in the
secondconfiguration,and viceversa.The cross-validationresults
from these two configurations were averaged to obtain final ROC
curves. For neural-network experiments, training was repeated
several times for each configuration, each time with random
network initialization in order to eliminate any potential bias
attributable to particular initial conditions. The order in which
subjectswithina trainingset werepresentedfor trainingwasalso
randomized.

ROC curves were constructed by determining pairs of true
positive-ratio and false-positive-ratio values at various settings of
decision criteria for each method. For the expert, this was accom
plished by selecting different thresholds of assigned abnormality
grades (from 0 to 5) for the classification criteria. For the neural
network, ROC curves were similarly computed by selecting dif
ferent thresholds for the output units of networks which were
trained to indicateabnormalityon a scaleofO to 1.For discrim
inant analysis, points on the ROC curve were collected by choos
ing a range ofprior probabilities(from 0 to 1)for the discriminant
procedure.

Becauseof the natureof the sigmoidtransferfunctionof the
network'sprocessingunits, it is usuallynecessaryto pre-process
the input data. The data should be scaled by an arbitrary constant
chosen so that the input values are â€œsmallâ€•(absolute values less
than about 2). Another pre-processing option is to dc-mean each
input pattern, i.e., to subtract the mean value of each n-dimen
sional pattern from each of the n components. The inherent
assumption here is that the mean value (indicating overall level
of metabolism)is not as important to the classificationprocess
as are the relative differences among the individual regional
function values. While it is not always advantageous to remove
information from input patterns, it can be beneficial ifthe infor
mation removed is misleading or has little value. Experiments
were performed for two pre-processingmethods in order to
quantitatively compare these methods. For one group of expen
ments, the mean was removed from each pattern, as described
above, to form zero-mean patterns. For the second group of
experiments, non-zero-meanpatterns were formed by simply
scaling the metabolic values so that their range was between 0
and 1.

RESULTS
The different methods were used to classify subjects in

Group 1 (â€œProbableADâ€•versus age-equivalent normals),
with the results shown in Figure 4. Since the specificity is
the complement of the false-positive ratio represented on
the abscissa in Figure 4, one can determine the sensitivity
and specificity for various strengths of criteria (more
â€œstrictâ€•or more â€œlenientâ€•)directly from the ROC curve.
At a specificity of 80% (0.2 false-positive ratio), for in
stance, one can see that the sensitivity of both the expert
reader and the neural network was in the range of 80%â€”
85%,whilethe sensitivityof discriminantanalysiswasin
the range of 65%â€”70%.The same methods were applied
to subjects in Group 2 (â€œPossibleADâ€•versus age-equiva
lent normals). As shown in Figure 5, the ROC curves for
the neural network and the expert nearly overlap one

BACK-PROPAGATION
NEURAL NETWORK

NORMAL

ABNORMAL

FIGURE3. A conceptualrepresentationofthePETclassifi
cation system basedon a neural-networkclassifier.Valuesrep
resenting metabolism in various regions of the brain serve as
input patterns. Examplesof patterns from previously-classffied
normal and abnormalsubjects can be used to perform â€œsuper
visedâ€•trainingof the neuralnetwork. The dassification perform
anceof the network can then be tested by presentingmetabolic
patterns of new subjects. The number of units in the â€œhidden
layerâ€•canbevariedtooptimizethecross-validationperformance.

â€œpropagatedâ€•back through the network according to the gener
alizeddelta learninglaw(21).

The major architectural parameters of a back-propagation
neural network are: the number of hidden layers, the number of
hidden units within each layer and the number of training itera
tions. These parameters all affect the capacity of the network to
â€œgeneralizeâ€•whenperformingclassification.Althoughsome the
oretical guidelines for optimizing these parameters with respect
to a particular application can be found in the literature (22,43â€”
45), this type of optimization is still somewhat of an open
question. It is advisable to use the simplest architecture possible
and to train for no longer than necessary, since overtraining can
cause a network to â€œmemorizeâ€•its training set and degrade its
performance on the testing set. The network may learn classifi
cation â€œrulesâ€•which apply specifically to the training patterns
and are not generallyapplicable.Neural networkswith a single
hiddenlayerwereoptimizedwithrespectto the numberofhidden
units and to training duration. Optimization procedures were
performedas describedelsewhere(25).Briefly,classificationper
formances,as judged by ROC areas in cross-validationtesting,
were evaluated for different combinations of number of hidden
units and number oftraining iterations. Overtraining was consid
ered to occur when averagecross-validationROC areasbegan to
decreasewith increasingtraining.The number ofhidden units at
which ROC areas no longer increased with an increasing number
of hidden units was considered to be a number sufficient for the
data under consideration.

Normal controls were randomly divided into two groups of
equal size, and each group was then paired with an abnormal
group, thus forming two independent data sets which could serve
as training-testingpairs.In orderto balancethe numberof normal
and abnormal subjects in training sets (so as to eliminate any
learning bias), a number of patterns from the smaller class were
representedmore than once. In orderto make the cross-validation
results as general as possible (i.e., to reduce the results' depend
ence on any special propertiesof a given training-testingcombi
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Probable AD sets included Possible AD subjects, and vice
versa. In fact, experiments indicated that there was very
little difference (variation in average ROC area was 0.01)
between the case in which the abnormal groups for training
sets consisted of equal ratios of Possible AD and Probable
AD subjects and the case in which abnormal training
groups was composed entirely of either Possible AD or
Probable AD subjects. The cross-validation results pre
sented here are for the case in which networks were trained
on Group 1 and tested on Group 2, and vice versa. For
re-substitution tests, networks trained with either Group 1
or Group 2 were also tested on that same group.

The ROC areas for both subject groups are summarized
in Table 2. The neural-network ROC values shown in
Table 2 are mean values. Neural-network cross-validation
results were based on forty different training/testing cx
periments (twenty experiments for each of two cross
validation configurations), resulting in standard deviations
ofO.0l2 for Group 1and 0.018 for Group 2. For the cross
validation results shown in Table 2, networks with four
hidden units (8-4-1 networks) were trained for just 40
iterations. These were optimal training parameters, as
determined by the optimization procedure described ear
lier.

The results of the mean-removal comparison experi
ments are shown in Table 3. Results are shown for both
quantitative methods for each of two types of data repre
sentation: zero-mean and non-zero-mean (as described
earlier). Within Group 1, removing the mean resulted in
slightly higher ROC areas for the neural network, and
slightly lower ROC areas for discriminant analysis. For
Group 2, removing the mean made little or no difference
for either discriminant analysis or neural networks.
Neural-network training times for non-zero-mean experi
ments were longer (400â€”500iterations), than those for
zero-mean experiments.

Selected weight vectors associated with the hidden units
of networks that were trained to distinguish normal from

0
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>
I-
(I)
2
Mi

FIGURE4. ROCcurvesillustratingclassificationperformance
withinGroupI . Differentpointson the neural-networkcurvewere
determinedby continuouslyvaryingthe outputunit's decision
threshold.Theneural-networkcurveshownis anaverageof ROC
curves from forty ttials (20 trials for eachof two cross-validation
configurations).Differentpoints on the expert â€œcurveâ€•were de
terminedbyselectingdifferentdecisionthresholdsontheexpert's
0â€”5abnormalityscale.Inorderofdecreasingtrue-positiveratios,
the pointsabovecorrespondto thresholdsof 0.0, 0.5, 1.0, 2.0,
3.0, 3.5, 4.0 and5.0. Pointson the discriminantanalysiscurve
weredeterminedbychoosinga rangeof prior-probabilityvalues.
The discriminantanalysiscurvewas the averageof resultsfor
two cross-validationconfigurations.

another. The discriminant analysis curve shows a lower
sensitivity for nearly all values of false-positive-ratio.

Early experiments indicated that training-set size was
an important factor in the generalizing capabilities of both
quantitative methods. The influence of variations over the
available range of training-set size appeared to outweigh
any effects attributable to composition (i.e., whether the
training set contained Probable AD or Possible AD sub
jects). In order to use the largest possible number of
training samples while maintaining the independence of
testing sets, training sets for classifiers to be tested on

TABLE2
Classification Performance of Vailous Classification

Methods*0

Mi
>
Iâ€”
(1)
2
Mi

I-

ExpertReader
NeuralNetwork

(cross-validation)
Neural Network (re

substitution)
Discr.Analysis

(cross-validation)
Discr.Analysis(re

substitution)

* Each value represents the area under the ROC curve for a given

classificationmethod.

0.89
0.85

0.98

0.80

0.92

0.81
0.81

0.97

0.74

0.92

FIGURE5. ROCcurvesillustratingclassificationperformance
withinGroup2. Pointsonthecurveswerecomputedinthesame
manneras were points on the curves in Figure4.
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GroupI (ProbableGroup 2(PossibleAD
vs.Age-Equiv.AD vs.Age-Equiv.Method

Normal)Normal)

a Each value represents the area under the ROC curve.

Note:Trainingtimesfor non-zero-meanexperimentswere longer
(400â€”500iterations)thanthoseforzero-meanexperiments(40iter
ations).

Probable AD PET scans are presented in Figure 6. These
vectors represent the most distinctive and heavily-weighted
â€œabnormal-detectingâ€•patterns from groups oftrained net
works. The weight vectors presented here result from
training with non-zero-mean patterns, which corresponds,
of course, to the customary method by which human
experts observe PET images, i.e., without mean removal.

DISCUSSION
The results of this work suggest that PET has a notable

capacity for discriminating between normal and AD sub
jects, and that the back-propagation neural network is a
useful classification tool. As indicated by ROC-based per
formance evaluations within test groups of different diag

FIGURE 6. The two most importantâ€œdiscriminatingprofilesâ€•
used by the neural nets. Shown above are weight vectors of
hiddenunitsof networks trainedon Group1. The neuralnetwork
has incorporatedand combined some â€œtypicalAlzheimer's dis
easeâ€•features,particularlyasymmetryandleft-parietalhypome
tabolism,intoits featuredetectors.Notethatthecombinationof
the two weight patterns allowed a trained network to detect
frontalasymmetryineitherdirection:right-side-higher-than-leftor
@nht-ski@-InwAr-than-k@ft

nostic difficulty, the neural network's performance was
better than that of discriminant analysis and comparable
to that of an expert PET reader's performance, despite the
low-resolution image data (one value per lobe) provided
to the network. The nonlinear and nonparametric nature
of the neural network apparently allowed it to be a more
robust classification procedure than those based on tradi
tional statistical methods.

As expected, classification accuracy was higher within
Group 1 than within Group 2 (Table 2). In general,
patterns within the diagnostically more difficult group
(Group 2) would be less descriptive of the â€œADâ€•group,
thereby decreasing classification performance. The results
of the re-substitution experiments show, however, that it
is possible to separate normal from abnormal subjects with
almost complete accuracy in both groups. This implies
that higher accuracy for both groups could be obtained
with larger training sets.

Comparison between the results obtained using zero
mean data versus those obtained with non-zero-mean data
served to demonstrate, at least for this subject group, the
relative unimportance ofthe mean value in discriminating
between normal and abnormal PET scans. In general,
removing the mean from the data presented to the quan
titative classifiers either made no difference in classifica
tion performance, or made it easier to distinguish between
the two groups. The single exception was a slight degra
dation in discriminant-analysis performance for Group 1,
as shown in Table 3. For the neural network experiments,
results with zero-mean values were either equal to or
slightly higher than results with non-zero-mean values.
Also, shorter training times indicated that it was easier to
separate the two classes when using zero-mean values.

The results of classification within Group 1 are lower
than those reported by Friedland et al. for a similar group
of subjects studied with FDG-PET (46). There are at least
two possible explanations for this difference: differences in
PET-camera resolution, and differences in the method for
collecting input-function blood samples. The metabolic
values obtained with the Scanditronix camera used by
Friedland et al. [with a 6 mm FWHM (47)] can differ
significantly from those obtained from the same subject
with a low-resolution camera (48). In addition, Fnedland
et al. performed arterial blood collection, rather than ar
terialized venous collection. The latter has been cited in
more recent literature as a potentially significant source of
error (49).

It should be remembered that there are three major
issues to be considered in a PET-based classification sys
tem: (1) the intrinsic diagnostic power ofPET imaging; (2)
the quality ofthe image analysis; and (3) the classification
method. Each of these matters will influence the perform
ance of a classification system. Although the focus here is
primarily on classification methods, it should be remem
bered that poor performance in either of the other two
areas will compromise the classification results.

TABLE3
ClassificationPerformancefor Two DifferentData

Preparation Methods*

NeuralNetwork0.850.81(zero-mean)Neural

Network0.820.80(non-zero-mean)Discr.

Analysis0.780.74(zero-mean)Discr.

Analysis0.800.74(non-zero-mean)
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It can be seen from the weight patterns (feature vectors)
shown in Figure 6 that the networks incorporated and
combined several patterns of asymmetry and hypometab
olism into their feature detection process. These feature
vectors can be thought ofas representing the relative effect
of individual input variables while others are held fixed.
These vectors, however, should be interpreted carefully.
They represent profiles that have been adjusted to serve as
discriminating profiles for abnormal PET scans on a group
basis. Metabolic patterns, representing individual subjects,
which were presented to the neural network and â€œmatched
upâ€•with one or more of the prominent aspects of one or
both of these weight vectors, were â€œjudgedâ€•abnormal
according to the degree of matching. An increase in the
number and/or extent of matching proffle characteristics
corresponded to an increased indication of abnormality.

Severalaspectsofthese profilesdeservemention. Vector
1 served as a mechanism for detecting patterns of promi
nent left-impaired asymmetry in parietal, temporal and
occipital regions. These patterns, combined with sparing
of the occipital and temporal regions (relative to other
regions) and pronounced hypometabolism in the left-pa
rietal lobe, were strong indicators of abnormality. Vector
2 served to detect occipital and temporal asymmetry in
the opposite direction, i.e., right-side hypometabolism
(though not as pronounced as in vector 1), combined with
sparing ofthe occipital and frontal regions relative to other
regions, and hypometabolism in the parietal and temporal
regions. Frontal asymmetry was also an abnormal indica
tor, particularly in vector 1, which shows right-side-lower
than-left asymmetry. Vector 2 shows frontal asymmetry
in the opposite direction, which allowed trained networks
to detect frontal asymmetry in either direction. It can be
seen that the combination of these two weight patterns
allowed trained neural networks to detect quite a rich
variety of abnormal indicators.

The ROC curve represents the performance at several
different settings of the particular decision criteria. The
area under the curve is the â€œonlyperformance measure
available that is uninfluenced by decision biases and prior
probabilities, and it places the performances of diverse
systems on a common, easily interpreted scaleâ€•(40). The
area values presented above can be compared with values
from the literature (40), which describe the diagnostic
performances ofvarious medical imaging techniques, such
as the detection of brain lesions on CT (A = 0.97), on
radionuclide scanning (A = 0.87) and the detection of
adrenal disease (0.93 for CT, 0.81 for ultrasound).

The ability of this study to fully evaluate the diagnostic
capability of neural networks was limited by several con
siderations. Although, for a PET study, this group of
subjects was fairly large, it was small enough to impose
limitations in two senses. First of all, the neural network's
â€œpastexperience,â€•in each evaluation, was represented only
by the subjects in the training set. The expert reader's
training, of course, was not limited to the data sets used

to train the quantitative classifiers, but was based on
knowledge gained from a professional lifetime's worth of
experience. In addition, the low-resolution â€œviewâ€•that the
neural network had of each PET study certainly repre
sented a significant handicap.

Another factor which may have influenced the results is
the fact that, ifthe expert reader is considered as an expert
system in the same sense as were the quantitative classi
flers, part of the expert's training was performed on the
â€œtestingset.â€•Some of the expert's conclusions regarding
trends of asymmetry, etc. may actually be rather specific
for this group. In terms ofthe ROC values presented here,
this represents an additional â€œhandicapâ€•on the quantita
tive classifiers, as compared to the expert reader. When
evaluating the quantitative classifiers, the training and
testing sets were completely independent.

Another limitation in evaluating the classification meth
ods described here stems from the assumption that the
clinical diagnosesare accurate. Postmortem studies have
shown confirmation of clinical diagnoses for AD cases to
average about 80% (50-52). While all abnormal subjects
in this study presumably have an organic brain disorder,
they may have, in approximately 20% of the cases, a
disease other than AD. Another factor that may degrade
specificity is the heterogeneity in pathological findings in
AD. This heterogeneity may eventually produce several
different â€œmetabolictypesâ€•of AD. Thus, the standard by
which the methods' performances are measured is itself
somewhat uncertain. These limitations would particularly
apply to the results from Group 2, whose â€œADâ€•diagnoses
were less certain than those in Group 1.

The possible existence of metabolic sub-types noted
previously could serve to help explain the higher accuracy
of neural networks as compared to discriminant analysis.
As the weight vector analyses have shown, the neural
network approach enables the identification of more than
one characteristic metabolic profile, which is appropriate
when a single disease may be manifested by more than
one metabolic pattern.

The combination of PET and neural networks appears
to be an objective and useful diagnostic tool for AD, and
would appear to be well-suited for structure-function
based classification in other diseases as well. It should be
noted that the current study did not involve differential
diagnosis. Future work would include training with cx
amples of more than one disease category.

Artificial neural networks can be used to model anatom
ical/functional disorders, since their architecture and proc
easing modes are similar to those of biological networks.
In the study presented here, patterns of regional function
have been associated with clinical diagnoses. In a similar
way, regional functional patterns can be associated with
patterns in neuropsychological evaluations, which could
lead to the discovery of patterns associated with very
specific neurological or cognitive syndromes.

An image-based classification system could be easily
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and effectively used to compare imaging modalities as well
as procedure-specific parameters (tracer concentrations,
number of counts to collect, etc.). Additional data from
magnetic resonance scans and even data from neurological
and psychological evaluations could be included to form
the basis ofa comprehensive expert system. Such a system,
trained with the knowledge of human specialists, could be
available wherever there was a computer and could be
available on a continuous basis.

ACKNOWLEDGMENTS
Portions of the researchreported here were funded under an

agreement with the Aging and Adult Services Program Office,
Departmentof Healthand RehabilitativeServices,State of for
ida. Additionalsupport was providedby fellowshipawardsto J.
S. Kippenhan from the University of Miami Graduate School,
The Educationand ResearchFoundation of the Societyof Nu
clear Medicine, The International Society for Optical Engineering
and The Society for Imaging Science and Technology.Other
supportwas from generalresearchfunds from Mt. Sinai Medical
Center, Miami Beach, FL. We are indebted to Mr. J. Chang and
Drs. A. Apicella and F. Yoshii for valuable assistance in perform
ing and analyzing the PET scans.

REFERENCES
I. Foster NL, Chase TN, Fedio P, Patmnas NJ, Brooks RA, DiChiro 0.

Alzheimer's disease: focal cortical changes shown by positron emission
tomography.Neurology1982;33:961â€”965.

2. FosterNL,HansenMS.SiegelGJ,KuhiDE.Medialandlateraltemporal
glucose metabolism in aging and Alzheimer's disease studied by PET.
Neurology1988;38(suppl1):133.

3. FriedlandRP,BudingerTF,GanzE,etal.Regionalcerebralmetabolic
alterations in dementia of the Alzheimer type: positron emission tomog
raphy with [â€˜@FJfluorodcoxy-gIucose.J Comput Assist Tomogr 1983;7:
590â€”598.

4. Duara R, Grady C, Haxby J, et al. Positron emission tomography in
Alzheimer's disease. Neurology 1986;36:879â€”887.

5. FosterNL,OilmanS,BerentS.MorinEM,BrownMB,KoeppeRA.
Cerebral hypometabolism in progressive supranuclear palsy studied with
positron emission tomography. Ann Neurol 1988;24:399â€”406.

6. McGecrPL, Kamo H, HarropR, et al. Positronemission tomographyin
patients with clinically diagnosed Alzheimer's disease. Can Med Assoc I
1986;134:597â€”607.

7. Kamo H, McGeer PL, Harrop R, et al. Positron emissiontomography and
histopathology in Pick's disease. Neurology 1987;37:439.

8. LoewensteinDA, Barker WW, ChangJ, ci al. Predominantleft hemisphere
metabolic dysfunction in dementia. Arch Neurology 1989;46:146â€”152.

9. Haxby iv. Restingstate regionalcerebralmetabolismin dementia of the
Alzheimertype.In: Duara R, ed.Positronemissiontomographyin demen
tia. New York: Wiley-Lisa;1990:93â€”116.

10. Schapiro MB, Grady C. Reductions in paiietal/temporal cerebral glucose
metabolism are not specific for Alzheimer's disease. Neurology 1990;
40(suppll):152.

I I. Friedland, P2. â€˜Normal'-pressurehydrocephalus and the saga ofthe treat
abledementias.JAMA 1989;262:2577â€”2581.

12. Duara R, Grady C, Haxby JV, et al. Human brain glucose utilization and
cognitive function in relation to age. Ann Neurol 1984;16:702â€”713.

13. Yoshii F, Barker WW, Chang JY, et al. Sensitivity of cerebral glucose
metabolism to age, gender, brain volume, brain atrophy, and cerebrovas
cular risk factors. I Cereb BloodFlow Metab 1988;8:654â€”661.

14. Powers WJ, PerlmutterJS, Videen TO. Accuracy of PET for detecting
Alaheimer's disease. J Nuc/Med 1990;3l:730.

15. MoellerJR, StrotherSC, SidtiSJJ, RottenbergDA. Scaledsubproflle model:
a statistical approach to the analysis of functional patterns in positron
emission tomographic data. I Cereb Blood Flow Metab 1987;7:649â€”658.

16. HaxbyJv, t@@a R, GradyCL,CulterNR, RapoportSl. Relations between

1466 The Journal of Nuclear Medicine â€¢Vol. 33 â€¢No. 8 â€¢August 1992



43. Baum EB. On the capabilities of multilayer perceptrons. J Complexity
1988;4:193â€”215.

44. Mirchandani 0. On hidden nodes for neural nets. IEEE Trans Circuits
and Systems l989;36:66lâ€”664.

45. Mehrotra KG, Mohan CK, Ranka S. Bounds on the number of samples
needed for neural learning. IEEE Trans Neural Networks l991,2:
548â€”558.

46. Friedland RP, Horwitz B, GradyC, et al. An ROC analysis of the diagnostic
accuracyofPETwith FDG and x-raycomputedtomographyin Alzheimer's
disease [Abstract]. J Cereb Blood Flow Metab 1989;9(suppl 1):S566.

47. Daube-Witherspoon ME, Green MV, Holte S. Performance of Scanditro
nix PC1024-7B PET scanner [Abstract). I NuclMed 1987;28:607â€”608.

48. Grady CL Quantitative comparison of measurement of cerebral glucose

metabolic rate made with two positron cameras. I CerebBloodFlow Metab
l99l;l l:A57â€”A63.

49. Carson RE. Precision and accuracy considerations of physiological quan
titation in PET. I Cereb BloodFlow Metab l991;l l:A45-A50.

50. Kukull WA, Larson EB, Reifler By, Lampe TH, Yerby MS, Hughes JP.
The validity of 3 clinical diagnostic criteria for Alzheimer's disease. Neu
rology 1990;40:1364â€”1369.

51. Sulkava R, Haltia M, Paetan A, Wikstrom J, Palo J. Accuracy of clinical
diagnosis in primary degenerative dementia correlation with neuropath
ological findings. J NeurolNeurosurg Psychiatry l983;46:9-l3.

52. Mendez MF, Mastri A, Frey HF, Thomas A. Diagnostic trends in Alz
heimer'sdisease: cithcopathologicalevidencein 383 casesfrom the Ramsey
dementia brain bank [Abstracti. Neurology 1990;40(suppl 1):177.

1467Neural-NetworkClassificationfor PETScansâ€¢Kippenhanet al




