
EDITORIAL
The Potentialfor Generator-BasedPETPerfusionTracers

Properties ofTABLE
I

Cyclotron-Produced Positron-Emitting
Used in PET ImagingNuclides

MostFrequentlyAverage

energyHalf-life
PositronperdisintegrationRadionuclide(mm)

yield(MeV)1502.04

99.9%0.73513N9.96
99.8%0.491lic20.4
99.8%0.38518F109.8

96.9%0.242.

See Reference 1.

ator serves traditional imaging with
an Anger-type gamma camera, it is
reasonable to believe that under the
right circumstances some of these
generators could be exploited to
provide clinically useful tracers.

Three ofthe most frequent appli
cations of PET imaging technology
involve studies of regional tissue
perfusion, regional tissue metabo
lism, and receptor-based tracer
binding processes. In considering
the potential role for generator-pro
duced radionudides in the clinical
application ofPET, it should be rec
ognized that the unique strength of

this technique derives not only from
the ability ofthe imaging technology
to provide quantitative images of
tracer distribution with relatively
high spatial resolution, but also
from its ability to employ radio
tracers that participate in distinct
and well defined biochemical/phys
iological processes (6). The main
stay of PET imaging with the cyclo
tron-produced positron-emitters is
the use of radiopharmaceuticals
based on natural biochemicals or
therapeutic drugs labeled by iso
topic substitution or isosteric re
placement. The generator-produced
positron-emitting nucides stand to
have their greatest clinical impact in
perfusion imaging with PET since
the labeling of useful metabolic or
receptor-based radiopharmaceuti

cals with these inorganic nuclides is
probably precluded by their chem
istry and/or physical half-lives. Per
fusion imaging with these nucides
remains a viable prospect because,
in principle, the organ uptake of a
blood flow tracer should occur by
passive diffusion without the in
volvement of any underlying bio
chemical processes in the tissue of
interest.

Rubidium-82 (82Rb)is the first of
the generator-produced positron
emitters to make its way into cmi
cal nuclear medicine. A 82Sr/82Rb
generator system developed by
Squibb Diagnostics was approved
for use by the United States Food
and Drug Administration in late
1989.The82Rb@cation,elutedfrom
the generator in isotonic saline, is
useful for the study of myocardial
blood flow since it is taken up by
myocardial cells as a K@ analog
(similar to the basis for the tradi
tional use of 201'fl@in nuclear car
diology). However, there are numer
ous problems with the use of 82Rb@,
leaving room for the advent of su
perior tracers derived from other
generator systems. These problems
include the expense associated with
82Sr production (7), the need for
generator replacement at 3â€”5wk in
tervals, the non-linear relationship
in myocardium between the rate of
perfusion and the Rb@ extraction

T he power ofpositron emission
tomography (PET) as a tool in
medical research and diagno

sis is well established and widely
recognized. An increasing body of
basic and clinical research involving
PET imaging, combined with im
proving PET instrumentation and
the prospects for third-party reim
bursement for efficacious PET pro
cedures, sets the stage for the re
search efforts ofseveral groups seek
ing to develop PET radiopharma
ceuticals labeled with generator
produced nuclides. While the cyclo
tron-produced nucides around
which PET has grown and flour
ished (Table 1) allow the study of
an impressive array of discrete bio
chemical and physiologic processes,
the expense associated with opera
tion of an in-house cyclotron for
production of these short-lived iso
topes remains a significant obstacle
to their more widespread applica
tion. There is hope that PET radio
pharmaceuticals labeled with gen
erator-produced nucides could fuel
the growth ofPET imaging in some
what the way the 99Mofl@mTcgen
erator played a central role in the
tremendous growth ofnuclear mcd
icine following its introduction.

Unfortunately, only a very lim
ited number of positron-emitting
nuclides are available from parent/
daughter generator systems (2â€”5);
those that would seem to have the
greatest prospects for clinical utility
are listed in Table 2. While the nu
clear properties of these parent/
daughter pairs may prevent them
from complementing PET imaging
as ideally as the 99Mofl9mTcgener
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Propertiesof SelectedTABLE
2

Parent-DaughterGenerator
Emitting NuclidesSystems

for Positron

DaughteraverageDaughterenergy
perParent

ParentDaughterDaughterpositrondisintegrationisotope
half-lifeisotopehalf-lifeyield(MeV)68Ge

271days@Ga 68.1mm89%0.740@Sr
25.6days@Rb 76.4sec95%1.409@Zn
9.26hr@Cu 9.74mm97%1.28052Fe
8.27hr52mMn 21.1mm97%1.1331@Xe

20.1hr1221 3.62mm77%1.087.

See Reference 1.

68Ga-radiopharmaceuticals to study
myocardial blood flow. We have re
ported on the synthesis, tissue dis
tribution, pharmacokinetics, and
PET imaging of a gallium-68 tris
(salicylaldimine) complex, Ga[(5-
MeOsal)3tamej, which showed
promise as a myocardial perfusion
tracer (12, 13). This unchanged, li
pophilic 68Ga radiopharmaceutical
resists ligand exchange with the
plasma protein transferrin following
intravenous injection and has al
lowed qualitative PET imaging of
myocardial blood flow in the dog
(13). However, 68Ga[(5-MeOsaJ)3-
tame] was judged unsuitable as a
substitute for cyclotron-produced
myocardial flow tracers, due to its
clearance from myocardium and a
need to correct the images for radio
activity remaining in the ventricular
blood pool (13).

Subsequent work with related
tris(salicylaldimine) ligands (14) led
to identification of one tracer,
Ga[(4,6-MeOsal)3tame], that af
fords significant myocardial uptake
and substantially better heart-to
blood ratios than Ga[(5-Me
Osal)3tame], as does Ga(BAT
TECH)'@ (Tables 3 and 4). How
ever, Ga[(4,6-MeOsal)3tame] has
not been pursued in imaging studies
because its clearance from myocar
dium (Table 3) is expected to corn
promise the quality ofthe perfusion
images it would provide. The same
problem would appear to exist with
Ga(BAT-TECH)â€•. With both of
these tracers, image contrast in the
ischemic heart can be expected to
be progressively degraded with time,
since the rate of tracer clearance is
likely to be greater in high flow than
in low flow regions. Thus, tracer
clearance from myocardium will
tend to impose short image acqui
sition times in order to maintain the
best relationship between tissue
counts and relative regional perfu
sion. In this context, the 68-mm
half-life of68Ga appears undesirably
long, since it may be substantially
greater than the imaging time dic
tated by the pharmacokinetics of the

fraction (8), and the influence of
ischemia on tracer uptake (9). In
addition, the 76-sec half-life of 82Rb
imposes short image acquisition
times, a factor that will be especially
problematic with those PET cam
eras designed to operate at relatively
low count rates. Finally, the synthe
sis of 82Rb radiopharmaceuticals for
diverse imaging applications may be
precluded by the relatively limited
chemistry of the alkali metals, as
well as the short physical half-life of
the nucide.

A 82Rb radiopharmaceutical for
the study of cerebral perfusion
would significantly increase the at
tractiveness and versatility of this
generator, but poses substantial
chemical challenges. The crown
ethers and cryptates that are known
for their size-selective complexation
of specific alkali metal cations un
fortunately have their least selectiv
ity in differentiating the larger cat
ions like Rb@.The 82Rb-radiophar
maceutical problem is further
complicated by the inherent toxicity
of these ligands and the fact that
tracer levels of 82Rb@must be coor
dinated in the presence of a very
large excess of competing Na@ions.
In this context the kinetic lability of
the alkali metal-cryptate complexes,
despite their considerable thermo
dynamic stability, poses further
problems, although more kinetically
inert complexes are now appearing.
However, the chemical problems to
be overcome in achieving the rapid
synthesis of a stable 82Rb-ligand

complex that will efficiently pene
trate the blood-brain barrier follow
ing intravenous injection appear
rather formidable.

In the current issue of The Jour
nalofNuclearMedicine, Dr. Kung's

group at the University of Pennsyl
vama reports on a new lipophilic
and cationic gallium-68 radiophar
maceutical, Ga(BAT-TECH)'@, that
appears to merit more detailed in
vestigation for its potential as a
tracer for myocardial blood flow
(10). The 68Ga generator is com
mercially available and is attractive
because the 27 1-day parent half-life
provides a long generator lifespan.
In addition, the 68-mm half-life of
the 68Gadaughter allows ample time
for radiopharmaceutical synthesis,
although it is rather long relative to
the normal time frame of PET per
fusion studies (especially those PET
procedures that involve multiple

tracer injections under a variety of
physiologic conditions).

While the 68-mm half-life of 68Ga
is compatible with exploitation of
the fairly extensive synthetic chem
istry of this element for radiophar
maceutical purposes, the develop
ment of ipophilic 68Ga radiophar
maceuticals for perfusion imaging
has proven a somewhat elusive goal
(11). No gallium radiopharmaceu
ticals have been reported that can
efficiently penetrate the intact
blood-brain barrier to allow 68Ga
studies of cerebral blood flow and
only modest success has been
obtained in the development of
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Compound1 mm2 mm5 mm30 mm60mmGa[BAT-TECH]@â€”I

.68â€”0.520.26Ga[(5-MeOsal)@tame]0.97â€”0.660.230.14Ga[(4,6-MeOsaI)@tame]2.0â€”0.990.530.35Cu[PTSM]2.7â€”3.4â€”3.3@.

See References 10and12â€”16.t

120 mm.

CompoundHeart/Bloodratio1mm2 mm5 mm30 mm60mmGa[BAT-TECHJ@â€”3.5â€”3.11.2Ga[(5-MeOsal).,tame]1

.5â€”2.0â€”I.6Ga[(4,6-MeOsaI)@tame]5.6â€”7.04.64.4Ga[THM2BED]â€”â€”â€”â€”2.4Cu[PTSM]5.9â€”9.8â€”9.0@SeeReferencesl0and

12-17.t
120 mm.

TABLE 3
Myocardial Levels of Various Radiopharmaceuticals in the Rat

% ID in heart

dium-energy cyclotron (25,26).
Thus, there are now numerous corn
mercial cyclotrons and clinical cy
clotron/PET facilities that could
supply 62Zn to hospitals in their
areas, should suitable uses of62Cube
found to merit establishment of an
appropriate distribution network.

We have recently reported sev
era! studies of a copper radio
pharmaceutical, Cu(PTSM), that
shows considerable promise as a
PET tracer for both cerebral and
myocardial perfusion when labeled
with 62Cu (15,23,25,27â€”30).This
unchanged and ipophilic copper(II)
bi@thiosemicarbazone) complex can
be administered intravenously and
is relatively highly extracted into
both cerebral and myocardial tissues
under diverse physiological condi
tions, whereupon the copper label is
efficiently trap@ and retained
(28-30). The prolonged tissue re
tention of the copper label can be
understood in terms of the known
susceptibility of Cuâ€•(PTSM)to re
ductive decomposition by reaction
with ubiquitous intracellular sulihy
dry! groups, a process that liberates
the label as ionic copper to be bound
by intracellular macromolecules
(16,31). Because the 62Culabel from
6@Cu(PTSM)is trapped in tissues in
a â€œmicrosphere-likeâ€•manner, im
age acquisition times with this
radiopharmaceutical are limited
only by the 10-mm physical half-life
ofthe radiolabel.

In animal as well as two prelirni
nary human studies with 62Cu
(PTSM),highqualityPETimages
of the brain and heart have been
obtained that compare favorably to
the images obtained with a vali
dated, cyclotron-produced PET per
fusion tracer, â€˜50-water(25). In se
quential baseline/activation PET
studies with an awake monkey,
62Cu(PTSM) has been shown to be
a sufficiently sensitive tracer of cer
ebral blood flow to allow detection
of focal areas of increased cerebral
perfusion resulting from neurologi
cal stimulation (25). Based on these
preliminary studies, it would appear

radiopharmaceutical. Table 4 also
presents data from a preliminary re
port on another new gallium radio
pharmaceutical, Ga[THM2BED],
that may show promise as a myo
cardial perfusion tracer (17).

In addition, it should be men
tioned that albumin microsphere
and macroaggregated albumin
radiopharmaceutical kits, sold corn
mercially for labeling with @mTc,
can also be labeled with 68(3@for@
PET applications that can exploit a
particulate perfusion tracer (11,18).
Gaffium-68-labeled albumin micro
spheres have been used in PET stud
ies of pulmonary blood flow (19)
and also as a reference tracer in the
validation of â€˜50-watercerebral and
myocardial blood flow techniques
(20,21). However, practical prob

lems inherent in the use of a pa.rtic
ulate perfusion tracer for organs
other than the lungs make this ap
proach unacceptable for routine
clinical cerebral and myocardial
perfusion measurements.

The possible role for the 62Zn/
62Cugenerator in clinical PET has

led to its re-examination in recent
years by several groups (22â€”25).
The 9.7-mm half-life ofthe copper
62 daughter is well suited to the time
frame of perfusion imaging studies
with PET. In addition, the physical
half-life of62Cu is attractive because
it is short enough to allow repeat
imaging at reasonably bneftime in
tervals, yet still long enough to po
tentially allow the â€œkit-typeâ€•chem
ical synthesis of a variety of 62Cu
radiopharmaceuticals.

The only major, but by no means
insignificant, disadvantage of the
62Zn/62Cu generator is the rather
short half-life of the 62Zn parent.
This parent half-life would necessi
tate generator replacement at 1â€”2-
day intervals, if62Cu were to be used
routinely for clinical PET (26).
While generator replacement at this
interval may be feasible, it is clearly
not ideal. However, the inconveni
ence offrequent 62Znreplenishment
is somewhat offset by the ease with
which this nucide can be produced
in large quantities by the 63Cu
(p,2n)62Zn reaction using a me

TABLE4
Heart/BloodRatiosfor SelectedRadiopharmaceuticalsin the Rat
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that 62Cu(PTSM) will be a suffi
ciently good tracer for cerebral and
myocardial perfusion to test the
clinical feasibility of using the 62Zn/
62Cu generator as a PET radio
nuclide source.

Of the two remaining generators
listed in Table 2, â€˜22Xe/'221and
s2Fe/52mMn,the 1221generator has
been more extensively investigated
as a PET radionuclide source and
probably offers the greatest poten
tial for clinical utility. In the opinion
of this author, the s2Fe/52mMn gen
erator presents no chemical or prac
tical advantages over the 62Zn/62Cu
generator, which has similar parent
and daughter half-lives, and pre
sents a major disadvantage over the
latter with regard to the relative dif
ficulty of producing the 52Fe parent
(32). However, the 52mMn daughter,

administered as either the chloride
or acetate, has been used as a PET
tracer for myocardial perfusion
(33).

Iodine-l22 is unique among these
generator-produced positron-emit
ters in two respects: it is not a me
tallic element and it is the daughter
of a nuclide that is an inert gas.
While the customary use of column
chromatography for parent/daugh
ter separation will not be appropri
ate for â€˜22Xef22I,suitable alterna
tive means for this separation have
been described (34,35). Although
â€˜22Xerequires higher accelerator
energies than 62Zn for production,
â€˜22Xeis available as a by-product in
the commercial production of 123J
for nuclear medicine. However, the
20-hr â€˜22Xehalf-life is somewhat
short and would stand to pose deliv
ery problems similar to 62Zn in rou
tine clinical use.

The 3.6-mm half-life of 122!is at
tractive for many PET applications,
as is the potential for labeling a va
riety of organic molecules with this
isotope. Unfortunately, the chemis
try ofiodine is not particularly ame
nable to the rapid synthetic chem
istry dictated by the physical half
life of this label. Nevertheless, at
least two potential agents for 122!

studies of cerebral perfusion have
been described (36,37).

In conclusion, the increasing role
of PET in clinical nuclear medicine
will continue to motivate efforts to
develop radiopharmaceuticals la
beled with positron-emitting nu
clides that can be obtained from
parent/daughter generator systems.
While limitations inherent in the
nuclear properties of these parent/
daughter pairs may prevent them
from supporting clinical PET as ef
fectively as the 99mTcgenerator has
supported single photon imaging,
further development of their chem
istry can be expected to produce
new PET tracers to serve the nuclear
medicine community.
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