
In I969 Edwardsand Hayes(1) first describedlo
calization of Ga-67 in human tumors; subsequently other
clinicalinvestigators(2,3) demonstrateditslocalization
in inflammatory lesions. However, after a decade of
clinical use, there is still no general agreement on the
exact mechanisms of localization in either tumor or in
flammation. Experimentsby Hartman and Hayes(4),
Gunasekera et al. (5), and Hara (6) indicate that in
travenously injected Ga-67 associates with transferrin.
Tissue-bound Ga-67 is also associated with iron-binding
proteins including ferritin and transferrin (7â€”9),and is
found primarily in microvesicles of tumor cells and ly
sosomes ofnormal liver cells (10). It is the mechanisms
facilitating the transfer from plasma to cell that repre
sent the chief mystery in understanding Ga-67 local
ization.

Gallium-67 is a Group â€œbtransition metal that re
sembles the ferric ion in atomic radius, charge, and in the
types of inorganic complexes these two atoms form
(11,12). Elemental gallium is a solid with low melting

point (29.8Â°C). Gallium-67 is usually adminstered as
the citrate to facilitate solubilization.

A major difference between gallium and iron is the
inability of gallium to be reduced in vivo. Therefore,
whereas ferric ion is easily reduced and interacts with
protoporphyrin IX to form heme (13), gallium remains
bound to iron-transport proteins and carrier molecules.
This difference explains in large part why, in spite of
their other physical similarities, the biologic distributions
ofgallium and iron differ.

Gallium binds to at least four iron-binding molecules:
transferrin (TF), lactoferrin (LF), ferritin, and sidero
phores.Siderophoresare compoundsof lowmolecular
weight (â€˜-â€˜-â€˜600daltons) that facilitate iron uptake by
microorganisms. The dissociation constants for the
gallium-macromolecular complexes vary with pH and
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relative concentration. Little is known about the relative
affinity of gallium for ferritin. Its relative affinity for the
other iron-binding macromolecules, however, ranks as
follows: siderophore >LF >TF (14-16). This order of
affinity is similar to that of ferric iron for these mole
cules, although of considerably different magnitude in
most cases.

FerricioneasilydisplacesgalliumfromIF and,toa
lesser extent, from LF. The gallium-siderophore bond
is considerably stronger, and gallium is only incompletely
dissociatedfrom siderophorewhena small excessof
ferric ion is added, which suggests a dissociation constant
within two orders of magnitude of that for iron-sidero
phore (I Emery, P B Hoffer unpublished data).

General biological considerations. Under laboratory
conditions, excess citrate ion inhibits cellular gallium
uptake (RE Weiner, MS Cohen, PB Hoffer, et al., un
published data) and the association of gallium with
transferrin (17), and affects its chromatographic char
acteristics (18). Following i.v. injection, however,
extensive dilution of excess citrate in the radiopharma
ceutical occurs, and therefore the amount of carrier
citrate in the preparation does not affect biologic local
ization (19).

When a large excess of ferric ion is administered be
foreor coincidentwith Ga-67, tumorandtissuelocal
ization is inhibited (20) and urinary excretion enhanced.
Similarly, presence of excess carrier gallium increases
radionuclideexcretionandinhibitslocalizationexcept
in bone. If, however, ferric ion or scandium is adminis
teredafter Ga-67administration,thereislessinhibition
of tumor localization,and tumor-to-bloodratiosare
actually increased (21,22). Unfortunately scandium is
toxic to humans, and therefore is not useful as a con
trast-enhancing agent. Excess apotransferrin also ap
pears to inhibit tumor localization ofGa-67 (23). Par
adoxically,increaseinserumirondueto irradiationhas
been shown to inhibit Ga-67 localization in some tumors
(24).

Following i.v. injection in humans, 10â€”25%of the dose
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is excreted in the urine within the first 24 hr. Subsequent
excretion is slower and is primarily via the bowel. Clin
ical observations indicate that most of the gallium re
tamed in the body is normally localized in the liver and
the skeleton. Localization of gallium in tumor or in
flammatory lesions alters this distribution, frequently
causing decreased hepatic uptake.

The localization of Ga-67 in tumors and abscesses, as
well as in most normal tissues, appears to occur in at least
two phases. During the early phase (up to about 6 hr) the
Ga-67 that has localized in the tissue can be extracted
by iron-binding chelates such as Desferal (26). However,
when Desferal is administered 24 hr after Ga-67, it is no
longer capable of leaching the radionuclide from most
tissues (27,28). This suggests that Ga-67 localizes by an
early weak binding or diffusion mechanism followed by
a firmer intracellular binding phase. Parenthetically,
Desferal has been used in an effort to improve lesion
contrast, since it reduces the blood level of Ga-67 even
at 24 hr following Ga-67 administration (27,28). In
animals, lesion contrast is improved by using relatively
large doses of Desferal. However, clinical studies in
humans have produced disappointing results, with no
significant improvement in contrast (PB Hoffer, un
published data). This is due primarily to the reiatively
small doses of Desferal that can be administered over
short time intervals at a level of safety consistant with
a noninvasive study. Also, while Desferal is still effective
in lowering the blood level of Ga-67 at 24 hr following
injection of the radionuclide, it is much less effective in
lowering Ga-67 levels in other normal tissues.

Specific mechanisms of uptake. Infection. At least
three mechanisms by which Ga-67 may localize in in
fections have been postulated. These include leukocyte
labeling (29), lactoferrin binding at the site of infection
(30), and direct bacterial uptake (31 ). For the latter two
mechanisms it is assumed that the Ga-67 is available at
the site of infection in either usual or increased amounts.
Increased availability of Ga-67 at sites of inflammation
can easily be explained by increased vessel permeability
at such sites.

Leukocyte localization. Gallium-67 has been shown
to be incorporated into leukocytes, which in turn localize
at sites of inflammation (32). Absence of leukocytes is
associated with decreased uptake of Ga-67 at inflam
matory sites in monkeys (29). Leukocytes are rich in
lactoferrin, and Ga-67 taken up by leukocytes is pri
manly bound to lactoferrin (33). It is doubtful, however,
whether this one mechanism fully explains Ga-67 lo
calization in inflammatory lesions. Gallium localization
has been demonstrated in patients with absence of cir
culating leukocytes (34), and the quantitative uptake of
Ga-67 in leukocytes is highly variable (35) (RE Weiner,
PB Hoffer, ML Thakur, unpublished data). While some
of this variability may represent the inhibitory effect of
excess citrate ion under the experimental conditions used

(RE Weiner, MS Cohen, PB Hoffer, et al., unpublished
data), even under ideal circumstances direct cellular
migration of labeled leukocytes is, in and of itself, an
inadequate explanation for the extent of Ga-67 local
ization in most inflammatory lesions.

Lactoferrin binding at the site ofinfection. The lac
toferrin (LF) contained in leukocytes is located within
the secondary granule (36,37). When leukocytes localize
at sites of inflammation, they not only ingest bacteria but
also excrete some of the content of the secondary gran
ules, including LF (38). The discharged LF tends to
remain localized, sticking to receptor sites in tissue
macrophages (39â€”41). Gallium-67, either in ionic form
or bound to TF, may be delivered to the site of inflam
mation by leakage through permeable vessel endotheli
urn and subsequently be retained by binding to apolac
toferrin (LF). Recent studies demonstrate increased
Ga-67 binding to fluid surrounding leukocytes that have
been stimulated to excrete LF, lending additional sup
port to this concept (30). In addition some tissues, e.g.,
salivary glands and breast, may also be capable of pro
ducing increased quantities of lactoferrin when stimu
lated by local inflammation.

Direct bacterial uptake. Finally, infective organisms
may take up Ga-67 directly, which has been demon
strated in vitro (31 ). Microorganisms grown in low-iron
environments produce siderophore (42-44). Since there
is very little free iron present in most tissues, it is assumed
that pathogenic microorganisms produce siderophore.
The siderophore molecules have extraordinary binding
affinity for Ga-67 as well as for iron. The Ga-67-sider
ophore complex is rapidly transported into the cell (T
Emery, P B Hoffer unpublished data). Once captured
within the cell the Ga-67-siderophore complex cannot
be released without metabolic destruction of the entire
molecule.

It is possible that other proteins such as ferritin may
also be involved in inflammatory uptake of Ga-67. Po
tential mechanisms involving ferritin have not been ad
equately explored.

The exact quantitative role these three mechanisms
play in localization of Ga-67 is unclear. Tissue injury
without bacterial infection will result in Ga-67 local
ization; infection in the absence of leukocyte response
will also result in localization. It is probable that in most
cases all three mechanisms function to bring Ga-67 to
the site of inflammation.

Localization in tumor. Proposed mechanisms of Ga-67
localization in tumor are highly speculative and con
troversial, with much contradictory evidence. There is
some agreement that the highly permeable walls of
tumor vessels, combined with the large extraceilular fluid
space of most tumors, play some role in the initial lo
calization of Ga-67 at the site of the tumor (45â€”47).
Hayes and associates postulate that it is the free ionic
Ga-67 fraction in the plasma that becomes incorporated
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into the tumor rather than the transferrin-bound fraction
(48). These findings are supported by studies demon
stratingthatasavailableIF bindingsitesaresaturated
with scandium or iron, relative tumor uptake of Ga-67
increases (20,21).

However, the studies of Larson and associates (23,49)
and of Sephton and Harris (50) suggest that TF may
play a key role in Ga-67 localization in tumors. Larson
has shown that Ga-67 uptake by tumors in tissue culture
is dependent on TF concentration, increasing initially
in direct proportion to added IF, and subsequently de
creasing as the IF begins to saturate the number of
available TF-binding sites on the tumor-cell membrane
(23).

While it is possible that Ga-67 uptake in tumors is due
to reactive cellular infiltration of leukocytes, this ex
planation is unlikely, since autoradiographic studies of
tumor tissue indicate localization within the tumor cells
themselves (51 ); moreover, direct tumor uptake of Ga-67
occurs in pure tumor-cell cultures.

The work of Anghileri (52,53) suggests a link between
Ga-67 localization and calcium metabolism in tumors.
However, this theory conflicts with the clinical obser
vation that Ga-67 uptake and Ca2+ content in tumors
are not associatedâ€”e.g., in neuroblastomas, which are
frequently calcified but exhibit a low incidence of Ga-67
localization. Hayes and associates have demonstrated
tumor Ga-67 bound to a specific 40,000-dalton metal
loprotein (54). Other investigators have shown tumor
boundGa-67 to beassociatedwith fractionsof higher
molecular weight (7). Fernandez-Pol has recently de
scribed a siderophore-like growth factor (SGF) present
in virally transformed tumors (53). This substance has

strong binding affinity for ferric ion and a number of
other cations including gallium. Finally, lactoferrin (LF)
has also been demonstrated in tumors known to localize
Ga-67, including Hodgkin's disease, Burkitt's lymphoma
(56), and melanoma.

In view of the strong evidence available to support
many of the competing theories for gallium localization
in tumor, it is possible that more than one mechanism is
operating.It seemsdoubtful,however,that all of the
proposed mechanisms play some role. One of the most
intriguingaspectsof manyof the mechanismsis the
similarity between the kinetics ofGa-67 and ferric iron
within the tumor. The concept that tumors have ex
traordinary need for ferric ion is not new; it is well known
that tumor cells contain high levels of ribonucleotide
reductase, an iron-dependent enzyme. It is possible that
gallium localization in tumors is exposing a pathway by
which the needed iron is derived.
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