USEFULNESS OF COMPUTER SCINTIGRAPHY FOR DETECTING LIVER TUMOR WITH 67Ga-CITRATE AND THE SCINTILLATION CAMERA

Ken Hamamoto, Kanji Torizuka, Takao Mukai, Todako Kosaka, Takashi Suzuki, and Ichio Honjo

Kyoto University School of Medicine, Kyoto, Japan

A number of studies on tumor-specific scanning agents have been performed (1–3). In 1969 Edwards, et al (4) reported that carrier-free 67Ga administered as citrate showed remarkable distribution in the palpable cervical lymph node which was histologically confirmed as Hodgkin’s disease. In a further paper (5) they reported that 23 of 41 patients showed localization of the isotope in neoplastic tissue. Their series included only a few cases with liver tumors.

The purpose of this paper is to present the usefulness of scintiphotography, particularly computer scintigraphy, with 67Ga-citrate and a scintillation camera for detecting the tumor of the liver.

MATERIALS AND METHOD

Thirteen cases with primary liver cancer and 16 cases with metastatic liver cancer have been examined by scintiphotography. In all the 29 patients, the localization of tumors was confirmed by surgical inspection and histopathological examination.

A Nuclear-Chicago Pho/Gamma III scintillation camera with a high-energy, 3-in., 1,000-hole collimator and an attached Polaroid camera for immediate imaging were used. In addition to the conventional Polaroid photographs, the data were also collected in a 1,600-channel multichannel analyzer and stored in the memory. Data stored in the memory were then transferred to a computer-compatible, seven-channel digitizing tape recorder.

The patients were given 1–2 mCi of 67Ga-citrate intravenously. Tumor images were displayed on the Polaroid camera integral with the scintillation camera, 48–72 hr after the injection of the isotope, at the 90-keV photopeak setting with a 20% window. The data were also stored in the memory of the 1,600-channel analyzer using a 40 × 40 array for later recording on digital tape.

Immediately after taking 67Ga scintiphotos, we injected 100 μCi of 198Au-colloid or 150 μCi of 131I-bromsulphalein (BSP) into all these patients keeping them in the same position. The images of 198Au-colloid or 131I-BSP deposited in the liver were then obtained. All data were stored in the tape to provide later computer scintigraphy and to allow a subtraction procedure.

Figure 1 shows the scintiphotograms with 67Ga-citrate and 198Au-colloid in a 37-year-old male who was confirmed to have a huge mass in the right lobe of the liver at surgery. A marked increase in activity localized in the right lobe of the liver where it was shown with 198Au-colloid as a cold area.

Figure 2 shows the results in a 54-year-old female who was confirmed to have multiple metastatic lesions in the right lobe. Any area with increased 67Ga activity or with decreased 198Au activity was not seen

Received Jan. 15, 1971; revision accepted Apr. 3, 1972.
For reprints contact: Ken Hamamoto, The Central Clinical Radioisotope Div., Kyoto University School of Medicine, Sakyo-ku, Kyoto, Japan.

![FIG. 1. 37-year-old male with hepatoma. There is increased concentration of 67Ga radioactivity in right lobe of liver, where cold area is demonstrated with 198Au-colloid, indicative of presence of tumor.](#)
HAMAMOTO, TORIZUKA, MUKAI, KOSAKA, SUZUKI, AND HONJYO

FIG. 2. 54-year-old female with metastatic liver tumor originating in pancreas. No unusual distribution of 67Ga-citr and 198Au-colloid is shown on scintiphotograms.

on scintiphotograms. Subtraction scintigram is shown in Fig. 8, in the case report.

The excretion of 67Ga into the bowel and distribution within the normal liver tissue make it difficult to delineate tumors in the liver. To obtain good resolution of the tumor from the surrounding tissue, computer scintigraphy was performed. The tapes were fed into a FACOM 230-60 computer in the Kyoto University Data Processing Center for processing.

First, data defined by a 40×40 matrix were averaged to reduce the random fluctuation. The effect of computer averaging was examined by various configurations such as five-element cross arrays, and a block array of 9, 25, and 49 elements with and without weighting factors. It was found that the nine-element averaging was appropriate in our present system.

Next, to extract true information from the averaged data which were blurred because of the lack of resolution of the detecting system iterative approximations were performed according to Linuma’s method (6,7). The observed image is expressed by the convolution of true radioisotope distribution with resolving power of the system. Utilizing a point source of 131I and 99mTc in water, we derived a system response function for the 1,000-hole collimator. A system response function with 131I was used for the restoration of images obtained by 131I-BSP or 198Au-colloid and that with 99mTc was used for 67Ga-citrate. From the results of phantom experiments, a resolving power matrix was chosen to be $7 \times 7 = 49$ elemental images at the central part of the matrix. The iteration procedure was terminated after two times to eliminate the noise in further approximations.

Finally, the computer sought the point of maximum intensity on the matrix and divided this value into 20 levels. The radioisotope image was printed out in a 120×80 array assigned by codes, symbols, and letters, as shown in Table 1. This 120×80 array was thought to show the liver on the computer scintigram with minimum distortion of the image.

The subtraction scintigram was obtained by subtracting 198Au-colloid activity from 67Ga activity in each matrix which was fed into the magnetic tape. Similar subtraction techniques have been employed in pancreatic scans, using 198Au for liver and 75Se-selenomethionine for liver and pancreas (8,9). In all the patients in this series, a 67Ga-198Au (or 131I-BSP) subtraction scintigram was obtained and selective angiography was performed. Scintigraphy with 67Ga-citrate and 198Au-colloid was performed and a subtraction scintigram was obtained in two healthy volunteers.

![FIG. 3](image1)

*FIG. 3.** Case 1. 23-year-old healthy volunteer. There is almost uniform distribution of 67Ga-citr and 198Au-colloid within liver in scintiphotograms. Subtraction scintigram demonstrates definite margin of liver and smooth count levels in liver. Area with positive count levels in subtraction scintigram is shown as shadow.

TABLE 1. SYMBOLS FOR HIGH-SPEED PRINTER

<table>
<thead>
<tr>
<th>Level (%)</th>
<th>Symbol</th>
<th>Level (%)</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>below 5</td>
<td>blank</td>
<td>50—below 55</td>
<td>1</td>
</tr>
<tr>
<td>5—below 10</td>
<td>blank</td>
<td>55—below 60</td>
<td>7</td>
</tr>
<tr>
<td>10—below 15</td>
<td>•</td>
<td>60—below 65</td>
<td>8</td>
</tr>
<tr>
<td>15—below 20</td>
<td>O</td>
<td>65—below 70</td>
<td>blank</td>
</tr>
<tr>
<td>20—below 25</td>
<td>▼</td>
<td>70—below 75</td>
<td>▼</td>
</tr>
<tr>
<td>25—below 30</td>
<td>blank</td>
<td>75—below 80</td>
<td>?</td>
</tr>
<tr>
<td>30—below 35</td>
<td>•</td>
<td>80—below 85</td>
<td>9</td>
</tr>
<tr>
<td>35—below 40</td>
<td>▽</td>
<td>85—below 90</td>
<td>blank</td>
</tr>
<tr>
<td>40—below 45</td>
<td>Q</td>
<td>90—below 95</td>
<td>▽</td>
</tr>
<tr>
<td>45—below 50</td>
<td>blank</td>
<td>95—below 100</td>
<td>6</td>
</tr>
</tbody>
</table>
COMPUTER SCINTIGRAPHY FOR DETECTING LIVER TUMOR WITH 67Ga-CITRATE

The usefulness of computer procedures in detecting liver tumors was compared with conventional imaging with a scintillation camera and with selective angiography.

RESULTS

Results of scintigraphic, angiographic, and computer scintigraphic examinations on primary and metastatic liver tumors are summarized in Table 2. In patients with primary liver cancer, positive findings were obtained in 12 out of 13 cases examined with 67Ga-citrate scintigraphy, in 12 out of 13 cases with 109Au-colloid (or 131I-BSP) scintigraphy, in 13 out of 13 cases with selective angiography, and in 13 out of 13 cases with subtraction scintigraphy. In patients with metastatic liver cancer, metastatic lesions were accurately delineated in 7 out of 16 cases with 67Ga-citrate scintigraphy, in 10 out of 16 cases with 198Au-colloid scintigraphy, in 12 out of 16 cases with selective angiography, and in 15 out of 16 cases with subtraction scintigraphy.

REPORT OF CASES

Case 1. Figure 3A shows the scintiphotos with 67Ga-citrate and 198Au-colloid in a 23-year-old healthy volunteer. Almost uniform distribution of 67Ga and 198Au-colloid within the liver was seen in scintiphotos. The subtraction scintigram shows the definite margin of the liver and smooth count levels in the liver (Fig. 3B).

Case 2. A 64-year-old male was admitted with a mass in the right upper abdomen. A selective celiac angiogram showed the presence of a mass in the right lobe of the liver (Fig. 4C). In scintiphotos, the area of increased activity with 67Ga was shown as coinciding with a zone of diminished activity with 198Au (Fig. 4A). In the subtraction scintigram this zone was shown to have high count levels (Fig. 4B). Surgery confirmed the presence of a mass, which was histologically hepatoma, in the right lobe of liver corresponding anatomically with the area of higher count levels in the subtraction scintigram.

Case 3. A 40-year-old male was admitted to the hospital for the evaluation of a painless mass of 3-month duration in the epigastric region. A selective angiography revealed that the common hepatic artery derived from the superior mesenteric artery in an aberrant fashion (Fig. 5C). Moderately increased vascularity of the tumor vessels was noted in the left lobe of the liver. Decreased radioactivity of 198Au-colloid was seen in the left lobe of the liver, but equal distribution of 67Ga activity was demonstrated in both lobes (Fig. 5A). The subtraction scintigram showed the positive count levels in this area (Fig. 5B). At the time of surgery, a mass which was histologically hepatoma with cirrhosis was confirmed in this area.

Case 4. A 43-year-old male was admitted with a 3-month history of general fatigue and anorexia. A selective celiac angiogram revealed no definite ab-

<table>
<thead>
<tr>
<th>TABLE 2. SUMMARY OF SCINTIPHOTOGRAPHIC, ANGIOGRAPHIC, AND COMPUTER SCINTIGRAPHIC EXAMINATIONS ON PRIMARY AND METASTATIC LIVER TUMORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive findings</td>
</tr>
<tr>
<td>Number of cases</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>67Ga-citrate</td>
</tr>
<tr>
<td>Primary liver cancer</td>
</tr>
<tr>
<td>Hepatoma</td>
</tr>
<tr>
<td>(90.9%)</td>
</tr>
<tr>
<td>Cholangioma</td>
</tr>
<tr>
<td>(100%)</td>
</tr>
<tr>
<td>Metastatic liver cancer</td>
</tr>
<tr>
<td>(43.8%)</td>
</tr>
</tbody>
</table>
normal vessels in the liver (Fig. 6C). Both scintiphotograms with 67Ga-citrate and 198Au-colloid showed decreased activity in the left lobe of the liver (Fig. 6A). A mass in the left lobe of the liver which was histologically cholangioma was shown as an area of higher count levels on the subtraction scintigram (Fig. 6B).

Case 5. A 45-year-old male was admitted with a mass in the left upper abdomen and progressive jaundice, thought to be obstructive and due to a possible pancreatic tumor. A selective angiogram did not confirm the presence of tumor in the liver (Fig. 7C). No abnormal distribution of 67Ga in the liver was shown on the scintiphotogram. A slight decrease in radioactivity in the left lobe of the liver, on the other hand, was shown with 131I-BSP (Fig. 7A). A subtraction scintigram accurately delineated the extent of the disease in the border of left and right lobes of the liver (Fig. 7B). Surgery confirmed a small mass (2 x 2 cm) at the same site as shown on a subtraction scintigram.

Case 6. A 54-year-old female was admitted with progressive jaundice and weight loss. A selective angiogram demonstrated abnormal vessels in the upper margin of the right lobe of the liver (Fig. 8B). The scintiphotogram with 67Ga did not delineate the presence of tumors. No unusual distribution of radioactivity in the liver was shown on the scintiphotogram with 198Au-colloid (Fig. 2). Several areas with higher count levels were shown on the subtraction scintigram (Fig. 8A). Surgery confirmed the presence of two metastatic lesions (2 x 2 cm) corresponding with areas of higher count levels on the subtraction scintigram (arrow). The other areas with high count levels could not be confirmed by the existence of foci at surgery.

DISCUSSION

It has been shown that 67Ga administered as a citrate complex can concentrate in a wide variety of human tumors. This concentration, however, does not constantly occur in all kinds of tumor. The mechanism for the localization of 67Ga-citrate in tumor is not known. We observed increased concentration of gallium in inflammatory lesions such as liver abscess. Swartzendruber and associates (10) pointed out from their light and electron microscopic autoradiography that the localization of 67Ga in the liver was over both hepatic and Kupffer cells and suggested that the intracellular sites localizing 67Ga were lysosomes or places of lysosomal enzymatic activity. Therefore 67Ga cannot be regarded as an ideal scanning agent for malignant tumors. However, concentration of 67Ga in liver tumors, especially in hepatoma, indicates the undoubted clinical value of this radionuclide.

In this study, 28 patients with primary or meta-
COMPUTER SCINTIGRAPHY FOR DETECTING LIVER TUMOR WITH 67Ga-citrate

FIG. 7. Case 5. 45-year-old male with metastatic liver cancer of pancreatic cancer. Slight decrease in radioactivity of 131I-BSP in left lobe of liver and almost normal distribution of 67Ga in liver area is demonstrated on scintiphotograms. Angiogram does not demonstrate any abnormal vessels in liver. Subtraction scintigram accurately delineates extent of disease in border of left and right lobes of liver. Surgery confirmed presence of small mass (2 X 2 cm) on site.

FIG. 8. Case 6. 54-year-old female with metastatic liver tumor originated in pancreas whose scintiphotograms with 67Ga citrate and 198Au-colloid were shown in Fig. 2. Selective angiogram demonstrates abnormal vessels only in upper margin of right lobe of liver. Several areas show positive count levels which are revealed on subtraction scintigram. Surgery confirmed two metastatic lesions (2 X 2 cm, respectively) corresponding to areas indicated by arrows.

static liver tumors were examined by scintiphotography with 67Ga-citrate, 198Au-colloid or 131I-BSP, and scintillation camera. Distribution of 67Ga within the normal liver tissue may mask a small hot lesion with a high level of radioactivity in the liver. To obtain good resolution of the tumor from the surrounding tissue, subtraction scintigraphy was performed. Our comparative studies of scintiphotography, subtraction procedure, and selective angiography showed that subtraction scintigraphy was of great value in detecting the liver tumors. The subtraction scintigram has enhanced the contrast so that tumors in the liver which are invisible on conventional readouts become obvious. Cases 5 and 6 exemplified this. In these two cases, the metastatic foci 2 cm in diameter were shown on the subtraction scintigrams. An example of false positive subtraction scintigram was shown in Fig. 8. Nonuniformity of the ratio of between 198Au-colloid and 67Ga-citrate in liver might be expected in patients with cirrhosis to cause falsely positive scans.

Our results would indicate that subtraction scintigraphy with 67Ga-citrate and 198Au-colloid is a superior method of detecting tumors in the liver.

SUMMARY

The usefulness of scintiphotography, particularly computer scintigraphy using 67Ga-citrate and the scintillation camera for detecting the tumors of the liver, was evaluated.

Twenty-nine patients with liver tumors were examined by the scintillation camera coupled to a 1,600-channel analyzer and tape data storage for computer processing using 67Ga-citrate, 198Au-colloid, and 131I-BSP.

Gallium-67 administered as the citrate was excreted into the bowel and distributed within the normal liver tissue. This made it difficult to delineate the tumor image in the liver. The dual isotopes, 67Ga-citrate and 198Au-colloid (or 131I-BSP), allowed computer-subtraction scintigraphy to be applied which enabled us to delineate the tumor image in two cases with metastatic liver tumor invisible on conventional scintiphotography with these isotopes.

These results suggested that 67Ga-citrate scintigraphy, particularly computer scintigraphy, was clinically useful in evaluating the presence and distribution of tumors of the liver.

REFERENCES

1. BONTE FJ, CURRY TS, OELZE RE: Tumor scanning with intravenous 131I-HSA. Radiology 86: 742-743, 1966
HAMAMOTO, TORIZUKA, MUKAI, KOSAKA, SUZUKI, AND HONJYO

ACCEPTED ARTICLES

TO APPEAR IN UPCOMING ISSUES

A Study of Normal Mammary Lymphatic Drainage by means of Radioactive Isotopes. Accepted 5/11/72.

E. W. Kistler, Quinquer, and P. M. Domech-Torné

Radioisotopes in Renal Transplantation. Accepted 5/11/72.

G. Hor, H. W. Fabst, K. J. Pfeifer, P. Heidenreich, H. Langhammer, and H. G. Heintze

Effects of Radiation Therapy on Bone Lesions as Measured by a Co and Sr Local Kinetics. Accepted 5/11/72.

u-Acetylecine (Preliminary Note). Accepted 5/12/72.

William G. Myers

Henry W. Gray, Lesley A. Hooper, and William R. Greig

A Feasibility Study of Tc Production on a Medical Cyclotron (Letter to the Editor). Accepted 5/12/72.

Editor Lebowitz

Failure to Improve Observer Performance with Scan Smoothing. Accepted 5/12/72.

An Unusual Site of Radioiodine Concentration in a Case of Thyroid Cancer (Letter to the Editor). Accepted 5/12/72.

R. D. Ganatra, S. H. Ayram, and S. M. Sharma

Positive Sr Bone Scans in Periosteal New Bone Formation (Letter to the Editor). Accepted 5/12/72.

E. U. Biele

Positive Bone Scintigraphy in Secondary Hypertrophic Osteoarthropathy (Reply). Accepted 5/12/72.

Tapan K. Chaudhuri

Tapan K. Chaudhuri

Neurogenic Bladder as a Complication of Isotope Cisternography (Case Report). Accepted 5/12/72.

Sarah Jonas and Philip Braubstein

Significance of the "Doughnut Sign" (Letter to the Editor). Accepted 5/14/72.

J. B. Rocker, Ben I. Friedman, and Edward S. Kaplan

Assessment of Hepatic Respiratory Excursion (Concise Communication). Accepted 5/17/72.

Philip H. Weiss, James M. Baker, and E. James Potchen

Evaluation of Technetium-Labeled Red Cells for Determination of Red Cell Volume in Man (Concise Communication). Accepted 5/17/72.

Vera Korubin, Michael N. Maisey, and Patricia A. McIntyre

Gamma-Ray Camera Utilizing a Coaxial Germanium Detector (Concise Communication). Accepted 5/17/72.

M. G. Strauss and I. S. Sherman

Pancreatic Visualization with Se-Selenomethionine after Surgery (Case Report). Accepted 5/24/72.

Yogendra Goel, Bha Dubovsky, and Martha McDonald

Telephonic Transmission of Scintigraphic Data (Preliminary Note). Accepted 5/25/72.

J. O. Morales and Barry B. Goldberg

Distortion Produced by Pinhole Collimators (Letter to the Editor). Accepted 5/26/72.

T. D. Craddock

Abnormal Liver Scan (Radiocolloid "Hot" Spot) Associated with Supernumerary Cardiac Obstruction (Case Report). Accepted 5/26/72.

John T. Joyner

Robert Loevinger

Acetate Meningitis Following Isotope Cisternography (Letter to the Editor). Accepted 5/26/72.

John C. Herbert and James Cooper

Donald P. Logsdon

Uptake of Radioiodine in Lungs and Other Extraesoseous Tissues (Letter to the Editor). Accepted 5/26/72.

Tapan K. Chaudhuri, Tuhin K. Chaudhuri, and James H. Christie

Splenic Sequestration of Tc-Labeled Red Blood Cells. Accepted 5/12/72.

H. L. Atkins, William C. Eckelman, Wolfgang Hauser, Johannes F. Klopper, and Powell Richards

Determination of Plasma Renin Activity by Radioimmunoassay: Comparison of Results from Two Commercial Kits with Bioassay. Accepted 5/6/72.

E. R. Cherven, Marc Lory, Theresa Liang, Hyo Bok Lee, and M. Donald Blalock

Letter to the Editor. Accepted 6/12/72.

Robert R. Hiscock

Quantitative Radioscintigraphic Angiocardiography. Accepted 5/12/72.

Paul M. Weber, Leon V. dos Remedios, and Ivan A. Jasik

Renal Clearance and Brain Tumor Localization in Mice of Tc-99m Compounds of Sn DTPA, Iron-Ascorbic Acid DTPA, and Iron-Acetic Acid. Accepted 6/26/72.

T. Konikowski, Howard J. Thomas, and Thomas H. Haynie

New Bone Scanning Agent. Accepted 6/26/72.

Frank P. Castronovo and Ronald J. Callahan

Effect of Increased Iodine Intake on Thyroidal Response to TSH Stimulation. Accepted 6/28/72.

Herbert S. Nelin

Brain Scanning with Tc-99m: In Multiple Sclerosis (Concise Communication). Accepted 6/26/72.

D. C. Moses, Larry J. Davis, and Henry N. Wagner, Jr.

 Rapid Preparation of Autologous Radiolabeled Fibrinogen. (Concise Communication). Accepted 6/26/72.

Ronald C. Roberts, Carolyn O. Sonnentag, and James H. Fribble

Filter to Correct for Inverse Square Law Nonuniformity in the Pinhole Camera (Letter to the Editor). Accepted 6/26/72.

Herbert Malamud

Pulmonary Metastases from Thyroid Carcinoma Detectable only by Tc Scan. Treatment and Response (Case Report). Accepted 6/28/72.

Macroaggregation of an Albumin-Stabilized Technetium-Tin (II) Colloid (Concise Communication). Accepted 6/28/72.

W. M. Chen and H. S. Waymouth

Whole Body Imaging and Count Profiling with a Modified Anger Camera. I. Principles and Application. Accepted 6/28/72.

Michael Cooke and Ervin Kaplan

Whole Body Imaging and Count Profiling with a Modified Anger Camera. II. Implementation and Evaluation. Accepted 6/28/72.

Michael Cooke and Ervin Kaplan

Average Geometrical Value in Absorbed Dose Calculation (Letter to the Editor). Accepted 6/29/72.

Gerald J. Hine

Protection Against Radiation from Brachytherapy Services (Book Review). Accepted 6/29/72.

William G. Myers

Ngo Tran

JOURNAL OF NUCLEAR MEDICINE
Usefulness of Computer Scintigraphy for Detecting Liver Tumor with 67Ga-Citrate and the Scintillation Camera

Ken Hamamoto, Kanji Torizuka, Takao Mukai, Tadako Kosaka, Takashi Suzuki and Ichio Honjyo

This article and updated information are available at:
http://jnm.snmjournals.org/content/13/9/667

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml