
MRI-Based Attenuation Correction for PET/MRI:
A Novel Approach Combining Pattern Recognition
and Atlas Registration

Matthias Hofmann1–3, Florian Steinke2, Verena Scheel1, Guillaume Charpiat2, Jason Farquhar2, Philip Aschoff4,
Michael Brady3, Bernhard Schölkopf2, and Bernd J. Pichler1

1Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Radiology,
Eberhard-Karls-University, Tuebingen, Germany; 2Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; 3Wolfson
Medical Vision Laboratory, University of Oxford, Oxford, United Kingdom; and 4Department of Radiology, Eberhard-Karls-University,
Tuebingen, Germany

For quantitative PET information, correction of tissue photon at-
tenuation is mandatory. Generally in conventional PET, the atten-
uation map is obtained from a transmission scan, which uses a
rotating radionuclide source, or from the CT scan in a combined
PET/CT scanner. In the case of PET/MRI scanners currently un-
der development, insufficient space for the rotating source ex-
ists; the attenuation map can be calculated from the MR image
instead. This task is challenging because MR intensities correlate
with proton densities and tissue-relaxation properties, rather
than with attenuation-related mass density. Methods: We used
a combination of local pattern recognition and atlas registration,
which captures global variation of anatomy, to predict pseudo-
CT images from a given MR image. These pseudo-CT images
were then used for attenuation correction, as the process would
be performed in a PET/CT scanner. Results: For human brain
scans, we show on a database of 17 MR/CT image pairs that
our method reliably enables estimation of a pseudo-CT image
from the MR image alone. On additional datasets of MRI/PET/
CT triplets of human brain scans, we compare MRI-based at-
tenuation correction with CT-based correction. Our approach
enables PET quantification with a mean error of 3.2% for prede-
fined regions of interest, which we found to be clinically not sig-
nificant. However, our method is not specific to brain imaging,
and we show promising initial results on 1 whole-body animal
dataset. Conclusion: This method allows reliable MRI-based at-
tenuation correction for human brain scans. Further work is nec-
essary to validate the method for whole-body imaging.
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Multimodality imaging such as PET/CT, SPECT/CT,
and, recently, PET/MRI is an emerging research field. In
recent years, the combinations of PET/CT and SPECT/CT
have successfully made the transition from basic research
into clinical practice. Unfortunately, CT does not provide the
excellent soft-tissue contrast that MRI does, adds a signif-
icant amount of radiation dose, and does not allow true
simultaneous imaging. Therefore, much research in the past
few years has concentrated on combining PET and MRI.
Although the realization of this combination still poses many
technologic challenges, recent progress (1–3) indicates that it
is now only a matter of time before PET/MRI scanners will be
available for clinical use.

On the software side, attenuation correction (AC), which
accounts for radiation-attenuation properties of the tissue, is
mandatory to obtain PET images that are sufficiently accu-
rate for quantification. It is also important for visual inter-
pretation and improved lesion detection. Usually in stand-alone
PET scanners, the AC is obtained from a transmission scan
both with and without the patient, by using 1 or several moving
sources (either 68Ge or 137Cs). In combined PET/CT, AC is
derived from the CT information (4). In the case of a PET/
MRI scanner, insufficient space for a rotating source exists,
and the attenuation map needs to be determined in another
way. Ideally, one would like, as in PET/CT, to obtain the
attenuation map directly from the anatomic information, in
this case from the MR image.

Predicting attenuation values from MR images is intrinsi-
cally difficult because the MRI signal (magnitude and phase)
of an individual voxel is related to the proton density, but the
signal is not one-to-one related to the electron density
information that is needed for AC of 511 keV of radiation.
For example, in most standard MRI sequences, air, compact
bone, bed, and coils do not produce any signal, whereas their
attenuation coefficients are different. The impossibility of
any direct mapping from MRI to CT intensities can also be
seen in the joint histogram of these intensities in Figure 1,
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obtained from a human head scan. In particular, for low MRI
intensities the same MRI intensity corresponds to a set of
different CT values. Similar observations can be made for
joint histograms from all standard MRI sequences. The
pitfalls of mapping MRI to CT values are also documented
in recent work (5). Therefore, standard intensity-based seg-
mentation is bound to fail, and to determine the attenuation
value for a given voxel in an MR image we have to include
additional knowledge.

There is abundant literature on MR image segmentation.
However, the majority of this literature is concerned with the
segmentation of the MR image into different types of soft
tissue, in particular in the brain. With its high soft-tissue
contrast and numerous specialized sequences, MRI is ideal
for this purpose. Satisfying results can indeed be achieved
with standard segmentation techniques from digital image
processing (6,7). Several authors have demonstrated that
using neighborhood constraints can improve the results of
MRI-based segmentation (8). These methods were devel-
oped to distinguish different types of soft tissue. It is unclear
whether the methods are helpful for our problem, which
includes the need to predict bone structures. Martinez-Möller
et al. have argued that bone can be neglected for whole-body
imaging (9), but Kops and Herzog show that bone affects the
PET reconstruction of brain images, especially in gray matter
structures, because of their proximity to the skull (10).

Some authors have presented techniques for segmenta-
tion of MR images into air, bone, and soft-tissue classes,
which is what is needed for AC purposes (e.g., the review
by Zaidi (11)). One of the earliest is from Le Goff-Rougetet
et al. (12). El Fakhri et al. (13,14) mention using MRI-
based AC but without providing details about implementa-
tion or performance evaluation. Zaidi et al. have recently

claimed (15) that the method they previously introduced
(16) is more robust than the work of El Fakhri et al. and
admit that difficulties in the automatic segmentation led to
some manual intervention of the operator. Dogdas et al.
(17) use a series of morphologic operations to determine
soft tissue and bone inside the head and validate their
method on a dataset of 8 coregistered MRI/CT pairs. Kops
and Herzog (10) evaluate the PET quantification errors of
this method. They find that erroneous skull-thickness esti-
mations in Dogdas et al. (17) can lead to errors of up to
10%. Accurate estimation of skull thickness can, therefore,
be seen as a necessary requirement for single-digit per-
centage accuracy. Kops et al. (10,18) have also presented a
different MRI template–based AC method, in which they
also obtained errors of up to 10%. Robson and Bydder (19)
describe an ultrashort echo time MRI sequence, which
yields signal from bone. To our knowledge, this has not yet
been evaluated with AC.

The approaches mentioned above were developed for
application to brain imaging, and the authors do not
elaborate on whether the methods would generalize to
whole-body application. Template-deformation methods
such as those reported by Kops and Herzog (10) require a
reliable and locally precise intersubject registration.
Whereas the feasibility of this approach seems commonly
accepted for brain images (20,21), the same cannot be said
for the case of whole-body images, because of the high
intersubject variability. The aim of our work was to con-
tribute a method that uses an intersubject registration as
input but that can still generate correct predictions in the
case of local registration errors.

Determining the attenuation value corresponding to a
certain point in an MR image can be regarded as either a
regression problem (because the target values are indeed
continuously distributed) or, more common in practice, a
classification problem. In brain imaging, separation into 3
classes is normally considered to be sufficient, as it is
assumed that the histogram of attenuation values has 3
dominant peaks: air, soft tissue, and bone. In whole-body
imaging, the lungs are introduced as an additional class, as
it is sometimes done with fat. However, on the basis of the
histogram of CT values for a scan of the human head (Fig.
1), we do not observe only sharp peaks. The CT histogram
corresponding to bone often does not form a sharp peak,
because of different bone densities and (unavoidable)
partial-volume effects. It would, therefore, be preferential
that the attenuation map prediction method also allows for
attenuation values on a continuous scale.

Another aim of this work was to develop a method that
can reliably predict attenuation values from MR images.
We first predict pseudo-CT values on a continuous scale,
which are then mapped to the attenuation values as is done
in a PET/CT scanner. Our method combines local pattern
recognition with atlas registration, to be applicable also to
whole-body imaging in which approaches based on regis-
tration only are problematic.

FIGURE 1. 2-dimensional histogram of MRI and CT intensities
in T1-weighted head scan.
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A technical problem in MRI-based AC, in particular for
whole-body imaging, is the limited field of view (FOV) of
the MRI scanner. For example, in human thorax imaging,
the arms of the patient are often not covered. Although the
focus of this article is on the AC within the FOV, the atlas
registration part of our method could easily be used to
obtain predictions outside the tomographic FOV of the MRI
scanner.

PET AC has been investigated extensively by numerous
authors (22,23). AC is typically performed in 2 steps: first the
attenuation map is determined, and then it is applied to the
PET emission data during the image reconstruction process,
which transforms the sinogram data acquired by the PET
scanner via an inverse radon transform to obtain the final PET
image. For iterative reconstruction methods, the attenuation
map can be used in different ways, as described by Hebert and
Leahy (24).

The AC factor (ACF) for a specific line of response
(LOR) relates the measured signal I to the signal I0 that
would be measured in the absence of attenuation:

ACFLOR 5
I0

I
5 exp½

Z
LOR

mPET · dx�: Eq. 1

Here, mPET is the linear attenuation coefficient for
E 5 511-keV photons (25).

Assume that the AC values for each LOR are stored in a
matrix ACF such that every entry corresponds to 1 detector
pair (i.e., 1 LOR). The sinogram SINac;which is corrected for
photon attenuation, can then be determined by pointwise
multiplication of every entry in ACF with the corresponding
entry in the sinogram SINdet as measured by the PET
detectors:

SINac 5 SINdet · ACF: Eq. 2

To use a CT image for PET AC, the CT intensities need to
be converted to 511 keV, transformed into sinogram space,
and exponentiated to yield the ACFs. We introduce methods
to predict pseudo-CT images that are not obtained from an
actual CT scan. Nevertheless, they share the characteristics
of a real CT scan and, therefore, we can subsequently apply
the same methods as used on PET/CT scans. We use piece-
wise linear mapping (5) to convert CT intensities to AC
values:

mPETðhÞ 5
c · ðh=HU 1 1;000Þ h , 50HU

b 1 a · ðh=HU 1 1;000Þ h . 50HU;

�
Eq. 3

where h is the CT signal intensity, c 5 9:6·1025cm21; and
a and b are constants that depend on the x-ray tube voltages.

AC for simultaneous PET/MRI has received little atten-
tion so far. The first simultaneously acquired PET/MR

images of the human brain were attenuation-corrected only
with 2-class attenuation maps that were derived by thresh-
olding the MR images into tissue versus air (26). The head
coil was neglected because its position could not be deter-
mined from the MR or PET image.

MATERIALS AND METHODS

We present 2 different approaches to the problem of pseudo-CT
prediction. The first one uses local information, whereas the second
one is more global, working with information from the whole image.
The two approaches can be combined to obtain a unified method that
makes use of both local and global information.

Pattern Recognition with Gaussian Processes
For all standard MR sequences, the MR intensity of 1 voxel does

not contain sufficient information to uniquely determine its tissue
class. Figure 2 may, however, motivate the idea that the neighboring
voxels surrounding the voxel of interest (VOI), the patch, may add
some characteristic information. This may be particularly useful
when distinguishing between bone and air because the intensity of
the voxel alone is near zero in both cases, but the surrounding
volume looks different for air and bone regions.

Pattern recognition methods aim at determining a mapping,
f : P1R, that maps rectangular MR image patches, pi 2 P,
centered at the VOI to real-valued CT intensities, yi 2 R. Assum-
ing that a database of coregistered MR/CT image pairs is avail-
able, we can automatically (randomly) extract d example pairs,
ðpi; yiÞ 2 P · R, and use them to train the algorithm, that is, to
determine the mapping f, which depends on the used MR and CT
image characteristics. In particular for the MRI, it is necessary that
all images of the database are acquired with the same protocol.

Given the training database, we have a typical regression prob-
lem, for which we use gaussian process regression (27). Gaussian
processes are examples of kernel machines (28). These methods
have been used successfully in a variety of applications (29–31),
including prediction on MR images (32), using application-specific
kernels. A gaussian process is defined by a mean function,
m : P1R, and a covariance or kernel function, k : P · P1R. A
nonzero mean function, m, represents knowledge that the target
function is close to m. Furthermore, one expects that CT values
corresponding to similar MR patches pi, pj are highly correlated.
The degree of correlation or, equivalently, the similarity of pi, pj is

FIGURE 2. Xs indicate 2
voxels in MR image whose
tissue classes (air and bone)
cannot be distinguished on
basis of their intensity alone.
If we include surrounding
patch (rectangle), we see
patterns that are typical for
either bone or air, and dif-
ferent attenuation values
can be assigned.
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expressed by the kernel function. We used a gaussian function of the
form:

kðpi; pjÞ 5 exp 2
kpi 2 pjk

2

2s2
patch

 !
: Eq. 4

We assume the training labels to be noisy versions of the true
labels, for example, because of MRI/CT misalignments. Noisy ob-
servations can be encoded into gaussian processes by adding a term,
s2

n, to the covariance function k whenever the inputs are identical.
For an unseen patch p, gaussian process regression yields a gaussian-
distributed predictive distribution for fðpÞ, with mean and covariance
given as:

mðpÞ 5 mðpÞ1 kTC 21
N ðy 2 mÞ; Eq. 5

s2ðpÞ 5 c 2 kTC 21
N k: Eq. 6

Here, k has elements ki 5 kðpi; pÞ for i 5 1; . . . ; d, ðCNÞi;j 5

kðpi; pjÞ1 s2
ndi;j for i; j 5 1; . . . ; d, c 5 kðp; pÞ, and mi 5 mðpiÞ.

To predict a pseudo-CT image for a new patient, we extracted
for each voxel of the MR image a surrounding patch p and used
the mean, mðpÞ, of the distribution of fðpÞ as the best point
estimate of the CT value. We did not use the predictive variance
s2ðpÞ, but it could be used, for example, to reject the pseudo-CT
image when the cumulative predictive variance of the whole
image is too high. In such a case, one might have to rely on a more
primitive prediction method.

MRI/CT Atlas Registration
Another approach to determine the attenuation map from a

given MRI scan of the same patient is with atlas registration.
Assume that an atlas comprising an MR image and a correspond-
ing CT image for the same subject is given. Then, for any new
subject, a nonrigid registration algorithm could automatically
compute a deformation field that aligns the atlas MR image with
the new subject’s MR image. Applying the same deformation to
the atlas CT image would yield the desired result.

Instead of working with just a single image pair as an atlas, we
have built an atlas database consisting of MR and CT brain images
from patients (n 5 17Þ. Given a patient MR image, we register all
n atlas MR images to the patient MRI, yielding n predictions of
the CT value.

To avoid ethical issues related to exposing volunteers to
radiation, we used only images from patients who had received
MRI and CT scans after clinical indication. Patients were 56616 y
(5 men, 12 women; sufficient intersubject variance). CT values at
corresponding bone positions typically varied by 500 Hounsfield
units. For the atlas MR images, a T1-weighted spin-echo (SE)
sequence (echo time, 12 ms; repetition time, 500 ms) was used.
The dimensions of the MRI volumes were 256 · 192 · 32, with a
voxel size of 0:89 · 0:89 · 4:4 mm. The corresponding CT images
were acquired using a tube voltage of 120 kVp and a tube current
of 285 mAs. The in-plane resolution was 0:43 · 0:43 mm, and the
slice thickness was between 3 and 4.5 mm. The CT images were
later resampled to MRI resolution. The necessary intermodality
alignment between corresponding MR and CT images in the atlas
was performed by first aligning rigidly with MiraView (Siemens
Molecular Imaging) using manually placed markers, followed by

deformable registration with B-Splines–based implementation (33),
using normalized mutual information as a similarity measure. For
the registration of the atlas MR images to the patient MR image,
we used the spatial normalization function of SPM5 (Wellcome
Trust Centre for Neuroimaging). We used standard settings to
achieve a registration of all atlas images within approximately 15
min. Although we used human know-how to build the atlas, no
manual intervention was necessary at runtime (i.e., to predict a
pseudo-CT for a new patient).

Combining Local Pattern Recognition with Atlas
Registration

The approaches described above show practical limitations when
used alone. Just using the local patch may fail if the patch describing
the neighborhood of the VOI is not characteristic enough for a
certain CT value. This might lead to prediction of tissue classes that
are highly unlikely to occur at the query position, neglecting global
information. For example, this method might predict bone attenu-
ation values in the middle of the brain. On the other hand, it is well
known that image-registration methods often do not yield satisfac-
tory results, for example, because of local minima of the nonrigid
deformation energy function. More fundamentally, in general we
cannot even assume that there exists a one-to-one correspondence
between patient and atlas images. For example, it is extremely
unlikely that pockets of gas in the abdominal region could be
brought into one-to-one correspondence across individuals. In
such cases, it may be useful to consider local information around
the VOI.

We propose to combine local pattern recognition and atlas
registration methods by using atlas registration as prior knowl-
edge, which takes two forms, for the gaussian process regression.
First, we suggest using not only the patch but also the registered
coordinate of a training point as input. The registered coordinate
of a point is its position relative to a coordinate system that is fixed
with the anatomy of a reference subject. The motivation for using
a registered coordinate is that for a given patch at a certain
position in the patient image, the best match in the atlas database
is probably found nearby. To be able to compare positions in
different images, we have to transform them into a single coor-
dinate system. In our implementation, we chose the reference
subject for the registered coordinates to be the patient itself. Thus,
we first register all atlas MR images to the patient MR image,
applying the same transformations to the corresponding atlas CT
images. We then extract training pairs ðdi; yiÞ from all transformed
atlas images, where di 5 ðpT

i ; x
T
i Þ

T consists of the position xi of
the voxel in the patient coordinate system, and pi is the patch
surrounding it. Here, yi is the corresponding CT value. Instead of
the kernel in Equation 4, we then use:

kðdi; djÞ 5 exp
2kpi 2 pjk

2

2s2
patch

 !
· exp

2kxi 2 xjk2

2s2
pos

 !
: Eq. 7

Second, we include prior knowledge of the atlas registration by setting
the mean function m to the average value of the registered CT images.

A flow chart showing all processing steps that lead from the
MR image and the PET detector sinogram to the attenuation-
corrected PET image is shown in Figure 3.

The runtime for gaussian-process prediction scales cubically
in the number of training data pairs considered. Although this
runtime may look prohibitive at first sight, the location-dependent
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kernel reduces this cost. Because the covariance is almost zero
for patches that are not in the same area, the patches do not
contribute significantly to the prediction. Thus, we have to
consider only those training pairs in Equations 5 and 6, which
are relatively close to the VOI. This allows us to use many relevant
training examples from all the atlas subjects. If necessary,
runtimes could be further reduced, for example, by using the
predictive variance to adaptively refine a coarse-to-fine multiscale
prediction scheme.

All free parameters such as patch size, spatch, spos, and sn were
determined using cross-validation. Because the interslice distance
of the atlas database was rather large, we constrained the training
patches for prediction at a certain point to be extracted from
the same image slice only. Typically, we used 9 · 9 patches and a
15-voxel spos.

Quantitative Evaluation
Observer interest in predicted pseudo-CT images is not in the

display of the images but instead in their application to AC. In the
quantitative evaluation of such images, we need to look at how
errors in the attenuation map predicted from the MR image
propagate to the reconstructed PET image.

In general, a problem arises when evaluating the impact of MRI-
based AC (MRAC) versus CT-based AC (CTAC) for the PET
images, because MRI, CT, and PET (including the PET sinogram)
scans are rarely all available for the same patient. In addition, such
low patient numbers might not be sufficient for statistically signif-
icant evaluation. Often, only MR and CT images are at hand. To be
able to also use these datasets to estimate the impact of MRAC
versus CTAC, we use a simulated typical PET image. Therefore, we
estimate a typical PET image for each patient and calculate how this
PET image would change if it were obtained using MRAC instead of
CTAC (in which we use the CT attenuation-corrected image as
ground truth).

The process involves the following: The SPM5 toolbox (34)
provides template brain MR and 18F-FDG PET images. The MR
template image was registered to the patient MR images using
SPM5 normalization. The obtained transformations were then
applied to the template PET images, thereby yielding PET images
for each patient that match the patient anatomy. Next, to obtain
PETMRAC we first need the projection data ðSINdetÞ that are uncor-
rected for attenuation:

SINdet 5 RadðPETÞ=ACF

5 RadðPETÞ· exp 2RadðmPETðCTÞÞ
h i

;
Eq. 8

where Rad is the radon transform. Once SINdet is obtained,
PETMRAC is calculated by using the following equation:

PETMRAC 5 RecðSINdet · ACFMRÞ
5 Rec SINdet · exp RadðmPETðCTMRÞÞ

� �� �
5 Rec RadðPETÞ · exp½RadðmPETðCTMRÞ

�
2 mPETðCTÞÞ�

�
; Eq. 9

where CTMR is the MR-estimated pseudo-CT image and Rec the
reconstruction, that is, the inverse radon transform. We therefore
have an expression that relates the ground-truth PETand CT images
and an estimated pseudo-CT image, CTMR, with PETMRAC, the
PET image that we obtained by using CTMR for the AC.

Differences between PETMRAC and the original PET image are
dependent on the exact reconstruction method used. It is not,
however, the focus of this work to compare different reconstruction
methods. For the simulated PET images, we have simply recon-
structed each 2-dimensional slice with filtered backprojection,
neglecting normalization, scatter, and random coincidences, to
isolate the bias on emission due to wrong attenuation maps only.
We also assume that CT intensities scaled to 511 keV provide the
true PET attenuation values.

For the cases in which CT, MR, and PET images were available
from the same patient, 2-dimensional ordered-subset expectation
maximization with randoms, scatter, and AC was used to reconstruct
the images on the PET/CT scanner. The procedure was performed
twice, once with the original CT image and once with the MR-
derived pseudo-CT image for attenuation and scatter correction.

RESULTS

We evaluate our method for human brain scans using 2
datasets. First, we use our brain atlas itself to measure the
quality of estimated CT images and the impact on the
reconstruction of simulated PET images. Second, we eval-

FIGURE 3. Overview of steps involved
in our method for obtaining attenuation-
corrected PET image, based on PET detec-
tor sinogram and MR image. Resampling
of MRI, PET, and CT to required resolution
is performed wherever necessary.
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uate our method on 3 MR/PET/CT datasets that are inde-
pendent of the atlas dataset. Last, we give an outlook of
whole-body imaging with a rabbit dataset.

Evaluation of the Atlas Database

We used leave-one-out cross-validation (LOOCV) to
predict pseudo-CT images for every MR image, using the
remaining n 5 16 image pairs as a reduced atlas. The
average absolute LOOCV error per voxel of the predicted
pseudo-CT images was 100.7 Hounsfield units. As can be
seen in Figure 4, even in regions in which bone and air are
mixed, our method is able to distinguish bone, air, and soft
tissue with high accuracy.

As described in an earlier section, we generated simu-
lated PET images for each MR image in the atlas database
and then compared our MRAC method with the CTAC
method on these images. Figure 5 shows the joint histo-
grams of the PET images obtained with the different AC
schemes and the CT attenuation-corrected PET image that
served as ground truth.

Regression line coefficients and R2 values were calcu-
lated for all 17 patients, using linear regression with the
expression y 5 a1bx, where x is the ground-truth PET
image and y is a reconstruction based on one of the
presented AC schemes. Results are shown in Table 1.

The 2-class AC was implemented using an inside/outside
model. The inside of the patient was determined using a
series of morphologic operations. Visual inspection con-
firmed that the method determined the inside with high
accuracy. Voxels inside the patient were assigned a uniform
attenuation coefficient of 0.096 cm21.

As expected, nonperforming AC leads to image intensities
that deviate from the true image by factors of up to around 10

and are therefore not useful for quantitative analysis. Two-
class AC, which ignores bone, leads to systematic underes-
timation of activity and also to high variance. The proposed
method for AC has no significant over- or underestimation of
activity and has low statistical variance.

Evaluation of MRI/PET/CT Triplets

For 3 patients, who had both PET/CT and MR scans of
the head, we validated our method by rerunning the PET
reconstruction on the scanner (16 HiRez; Siemens Biog-
raph), using our MRI-estimated pseudo-CT image instead
of the original CT scan for scatter and AC.

In a combined PET/MRI scanner, the registration of the
PET and MR image will be a trivial issue because the PET
and the MRI gantry are physically aligned relative to each
other. Currently, in the absence of a clinically usable
combined PET/MRI scanner, we were still faced with the
issue of how to align the MR image, and the attenuation
image derived from it, with the emission data. Accurate
alignment of the attenuation image to the emission data is
crucial for accurate AC. However, this alignment step is not
a focus of this article; we simply aligned the pseudo-CT
images with the available CT images, using the automatic
rigid registration function in MiraView.

Outside the MRI scanner FOV, we did not predict
pseudo-CT values but used the intensities from the original
CT image instead. For the subsequent analysis, we ensured
that we analyzed only the effect of MRI-based AC in slices
in which the complete cross-section of the subject body was
inside the FOV of the MRI. We ignored the possible impact
of the attenuation and scatter of the MRI coil that would be
present in a real PET/MRI scanner.

Figure 6 shows 1 slice of the PET and CT images obtained
on the PET/CT scanner and the corresponding pseudo-CT
and PET images obtained with MRI-based AC. Although the
difference between the CT and pseudo-CT image is visible,
the effect on the PET images is relatively small and the visual
impression is that the PET images are similar. Quantification
was done by a nuclear medicine expert who drew regions of
interest (ROIs). For the 2 patients who underwent 18F-FDG
PET scans, 12 ellipses were placed in the dorsal cortex,
frontal cortex, lateral cortex, caudate nucleus, thalamus, and
white matter, each time left and right. The third patient
underwent a 68Ga-DOTATOC (where DOTA 5 tetraazacy-
clododecane tetraacetic acid and TOC 5 D-Phe-c(Cys-Tyr-
D-Trp-Lys-Thr-Cys)-Thr(ol)) PET scan, and 50% isocontour
lines were drawn on 3 regions with increased uptake
(2 lesions and the normal hypophysis).

For the ROIs of all 3 patients, the mean percentage dif-
ference in activity between PETCTAC and PETMRAC was
3:2%62:5%. Only for 1 ROI did we observe a problematic
quantification error, an activity overestimation of 10%. The
patient examined with DOTATOC presented with a small
Falx meningioma positioned directly next to the skull, and
our pseudo-CT overestimated the bone thickness in this
slice. The meningioma now appeared as if partly embedded

FIGURE 4. Images from patient’s T1-weighted spin-echo MRI
(left), pseudo-CT (as predicted using our method; middle), and
real CT (right) scans. MR T1SE 5 T1-weighted spin-echo MRI.
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in the bone, which led to increased AC and hence the
relatively high quantification error at the location of the
lesion.

Initial Results on Whole-Body Images

To apply our method to whole-body AC, we have obtained
MRI and CT scans from several euthanized rabbits. However,
despite our best efforts to minimize movement between the
scans by using a portable bed pallet, it has proved difficult to
obtain well-registered MRI/CT pairs. For 2 rabbit datasets,
the MR and the CT image could be aligned with sufficient
accuracy, which is why we present only preliminary results
for whole-body AC.

Given the 2 MRI/CT rabbit datasets, we used 1 rabbit as
the atlas and predicted the CT image of the second rabbit,
the ‘‘patient,’’ from its MR image. Because the training
database in this case consisted of only 1 example, we did
not try to predict a real-value CT image but confined
ourselves to the simpler task of predicting merely 3 classes:
bone, soft tissue, and air. This multiclass prediction was
performed using a one-versus-rest support vector machine
(28). Note that support vector machines are structurally
similar to gaussian processes, because the key design
element is again a positive definite kernel, for which we
used the one given in Equation 7. Also, because the
intersubject registration for whole-body images is far more
difficult than that for brain images, we have used a simple
automatic rigid registration (MiraView) to align the MR
images of the atlas and the patient.

Figure 7 shows the results of this 3-class classification,
compared with thresholding of the CT image. The figure
shows that reasonable prediction quality can be achieved,
even with only a crude rigid alignment.

DISCUSSION

On a dataset of MRI/CT brain images from 17 patients, we
have shown that our method enables, solely based on MRI
information, the prediction of pseudo-CT images that are
similar to the actual CT images. We have simulated PET
images and attenuated sinograms for these 17 patients and
calculated that the impact of using the pseudo-CT images
instead of the actual CT images for AC is small.

On an additional dataset of PET/CTand MR images from 3
patients, we have rerun reconstructions on the PET/CT
scanner, using our pseudo-CT images for AC. Again the
similarity of pseudo-CT images to actual CT images was
good and PET quantification similar to the CT attenuation-
corrected images. In one case, there were 2 confounding
effects. The lesion was adjacent to the skull, and the thickness
of the skull at that point was overestimated. Even in this
pathologic situation, the PET quantification error was ap-
proximately only 10%.

The question arises as to how large quantification errors
can be and still be acceptable before the error might influence
diagnosis. This question has been studied previously (15,35),
but in general it is difficult to answer: It depends, among other
things, on the body organ, the type of disease that one is trying
to diagnose, and even on the experience of the physician.
Judging from our personal communications with nuclear

FIGURE 5. Joint histograms showing
no AC (A), simple AC using attenuation
map with only 2 attenuation values (B),
and AC using our MRI-based predicted
attenuation map (C). No significant sys-
tematic over- or underestimation of ac-
tivity is demonstrated.

TABLE 1
Regression Coefficients and R2 Values

R2 value for. . .

Coefficient

Proposed

method

Uncorrected

images

Two-class

AC images

a 20.006 6 0.007 0.025 6 0.004 0.014 6 0.009

b 0.990 6 0.026 0.138 6 0.019 0.78 6 0.030

R2 0.968 6 0.011 0.476 6 0.076 0.884 6 0.044

FIGURE 6. Direct comparison of CT attenuation-corrected
PET image and PET image that was obtained with AC based on
pseudo-CT that was calculated from MR image only. Maximum
(Max), minimum (Min), and average (Avg) standardized uptake
values (SUV) are given for shown ROI. OSEM 5 ordered-subset
expectation maximization; FWHM 5 full width at half maximum.
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medicine experts, there seems to be agreement that quan-
tification errors of 10% or less typically do not affect
diagnosis.

Our approach is not limited to brain imaging. Instead, we
assume that our method is particularly strong for whole-
body AC. The initial results are promising; however, we do
not yet have sufficient data to verify this assumption.

One possibility to further improve the quantitative accu-
racy of our method would be to try different MRI sequences,
in particular, those sequences that might allow a more precise
delineation of bone or better estimation of bone density. The
impact of the MRI sequence choice might be higher with
particular bone-optimized sequences such as ultrashort echo
time MRI. However, in whole-body imaging, problems such
as tomographic FOV truncation cannot be tackled by such a
sequence alone, and again a combination of local classifica-
tion and an atlas-based method would probably remain the
solution of choice. An additional possibility for attenuation
map prediction outside the FOV would be to use the emission
data as input.

A further improvement can be expected with a higher
number of well-aligned CT and MRI training datasets. How-
ever, the acquisition of such image pairs turned out to be
difficult, especially for whole-body imaging. This is because
of unavoidable patient movement between the MRI and the
CT scans. Additionally, magnetic field inhomogenities lead
to geometric distortions in the MR image. The pattern rec-
ognition part can perform only as well as the data that are
used from training. We are currently working on the acqui-
sition of human whole-body MRI and CT scans.

CONCLUSION

A novel method for attenuation map prediction based on
the MR image has been presented. It has been evaluated for
brain imaging on a dataset of 17 MRI/CT pairs and on an
additional dataset of 3 MRI/PET/CT triplets. The results

show that MRI-based AC of PET images is possible with
high accuracy. The proposed method does not rely on a
high local accuracy of the atlas registration and therefore
seems particularly promising for whole-body applications,
supported by initial results from animal whole-body scans.
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