Fluorine-18-Altanserin: A Radioligand for the Study of Serotonin Receptors with PET: Radiolabeling and In Vivo Biologic Behavior in Rats

Christian Lemaire, Robert Cantineau, Marcel Guillaume, Alain Plenevaux, and Leon Christiaens

Cyclotron Research Center, Liège University, Liège, Belgium

No-carrier-added [¹⁸F]altanserin was synthesized by nucleophilic substitution of the corresponding nitro compound with [¹⁸F]fluoride in the presence of kryptofix 222 and K₂CO₃. After purification by preparative HPLC, [¹⁸F]altanserin was produced in less than 2 hr with a radiochemical yield of 10% (EOS) and a specific activity of 0.8–1.3 Ci/µmol. In rats, the tracer localized rapidly in the whole brain (0.5% ID/g organ) with a high binding to the frontal cortex. The frontal cortex/ cerebellum ratio increased with time and reached a plateau of 11 at 2 hr postinjection. This uptake in S₂ receptor regions was saturable and could be blocked by pretreatment with various S₂ antagonists. This radiopharmaceutical appears to be more selective for S₂ receptor sites than other ligands available today and allows the study of S₂ receptors under in vivo conditions.

J Nucl Med 1991; 32:2266-2272

In vitro studies on human brain autopsy material have shown that the serotonin receptor system is implicated in several conditions, including sleep (1), aging (2), Alzheimer's disease (3), affective and personality disorders (4-6), pain (7), and also extrapyramidal syndromes (8). In vivo study of S₂ receptors would represent a significant advance in the understanding of the various conditions where these sites are thought to play a role. Positron emission tomography (PET) allows the direct, noninvasive and repetitive measurement of neuroreceptors in regions of the brain provided that the appropriate radioligand is available at high specific activity (9).

A number of ¹¹C- or ¹⁸F-labeled radioligands have already been synthesized as radiopharmaceuticals for mapping S₂ serotoninergic receptor sites with PET. To date, in vivo studies have been performed with several serotoninergic antagonists labeled with positron emitters such as [¹¹C]ketanserin (10,11), [¹⁸F]spiperone (12) and [¹¹C] methylspiperone (13, 14), [¹⁸F]setoperone (15, 16, 17), [¹¹C] methylbromo-LSD (18, 19), and [¹⁸F]ritanserin (20, 21).

Altanserin, like setoperone, is a fluorobenzoyl derivative structurally related to ketanserin (22). The in vitro binding affinity constants (Ki: nM) of altanserin for S₂, D₂, and α_1 receptor sites, reported by J. E. Leysen (23) are respectively 0.13, 62 and 4.55 (Table 1). Based on these findings, altanserin was considered as potentially interesting radiotracer for in vivo serotonin receptor binding.

In this paper, we report the radiosynthesis of [¹⁸F]altanserin by nucleophilic fluorination of the corresponding nitro derivative as precursor (Fig. 1). Rat experiments also are described, including general and regional biodistributions as well as carrier and blocking effects.

MATERIALS AND METHODS

Starting Materials

Most of the organic substrates and solvents were of analytical grade from Aldrich. Methyl 2-isothiocyanatobenzoate, hydrobromic acid, hydriodic acid (57 % wt), and the gold label reagents dimethylsulfoxide and acetonitrile were purchased from Janssen Chimica and used without further purification. The aminopolyether kryptofix 222 (4,7,13,16,21,24) hexaoxa-1,10 diazabicyclo(8.8.8)hexacosan, potassium carbonate, and ethanol were obtained from Merck. Altanserin, bromoaltanserin, and nitrobenzoylpiperidine were a gift from Janssen Pharmaceutica. Oxygen-18-enriched water (98.5%) was obtained from Campro Benelux. All other reagents including β -chloroethyl-ethylcarbamate (24) were prepared according to literature methods.

HPLC System

High-performance liquid chromatography (HPLC) was conducted using a Waters system consisting of M-6000 A pump, a U6K injector and a Lambda max 481 LC U.V. spectrophotometer set up at 254 nm with a 10-mm analytical cell. A Nal (T1) scintillation detector was used for radioactivity measurements. Lichrosorb RP Select-B columns were from Merck. Conditions (column, eluent, flow) for separations are given in the following sections.

Radiochemistry

The synthesis of [¹⁸F]altanserin was performed as described in the Appendix by nucleophilic substitution of the nitro group of

Received March 21, 1991; revision accepted August 7, 1991.

For reprints contact: Christian Lemaire, Cyclotron Research Center, Liège University, 4000 Liège, Belgium.

TABLE 1 Binding Affinity Values (Ki, nM) of Various Serotoninergic Antagonists for Different Neurotransmitter Receptor Sites

(23)				
	S₂ [³H]Ketanserin	D₂ [³ H]Haloperidol	α ₁ [³ H]WB-4101	
Altanserin	0.13	62	4.55	
Ketanserin	0.63	240	11	
Setoperone	0.37	25	13 35	
Ritanserin	0.28	22		

nitroaltanserin, previously synthesized from p-nitrobenzoyl-4-piperidine.

Biodistribution Study

The in vivo biodistribution was measured in female Wistar rats (180-250 g) intravenously injected (femoral vein) under light ether anesthesia with 80-150 μ Ci of [¹⁸F]altanserin (specific activity: 0.6-1.2 Ci/ μ mol). Rats were killed at various times (5 min, 1 hr, and 4 hr after injection) by cardiac excision under ether anesthesia. The organs were removed and counted with a GeLi detector connected with a multi channel analyzer. The percentages of injected dose per gram of organ were calculated by comparison with a reference solution consisting of diluted samples of the injected compound.

Brain Biodistribution Study

The rat brain biodistribution was determined by dissecting, weighing, and counting samples (automatic gamma sample changer, Berthold BF 5300) from different brain regions (frontal cortex, striatum, thalamus, cerebellum) after femoral injection of 50–100 μ Ci of [¹⁸F]altanserin (specific activity: 0.6–1.2 Ci/ μ mol). Female Wistar rats (180–250 g) were injected under light ether anesthesia and killed by decapitation. The results are expressed as percentage of injected dose per gram (%ID/g) of tissue. From these data, regions-to-cerebellum ratios were calculated and compared.

Blocking Experiments

The selectivity of $[^{18}F]$ altanserin binding to serotonin S₂ receptor sites was examined as follows. Rats were intravenously in-

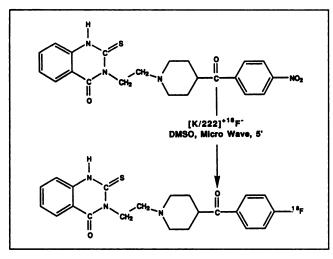


FIGURE 1. Radiolabeling of [¹⁸F]altanserin starting from its nitroprecursor.

jected (femoral vein) under light ether anesthesia with S_2 antagonists such as ketanserin (2.5 mg/kg), ritanserin (2.5 mg/kg), pipamperone (10 mg/kg), and methysergide (2.5 mg/kg) or D_2 antagonists such as sulpride (40 mg/kg), halopemide (20 mg/kg), and bromolisuride (0.4 mg/kg). Spiperone, a D_2 , S_2 antagonist, was also used at 2 mg/kg. The drugs were dissolved in saline containing 5% alcohol and one equivalent of tartaric acid to increase drug solubility. The animals were pretreated 1 hr before injection of tracer and killed by decapitation 2 hr post-tracer injection.

Studies on the Effect of Carrier

To check the saturability of altanserin uptake in the frontal cortex, a region rich in S₂ receptors sites, the frontal cortex-tocerebellum ratios were determined under light anesthesia in rats after intravenous injection (femoral vein) of 100 μ Ci [¹⁸F]altanserin at different specific activities (2 to 1000 mCi/ μ mol). The rats (2 for each specific activity) were killed by decapitation 2 hr after injection of the radiotracer.

Chemical Form of ¹⁸F in Rat Plasma

Four rats (200 g) were intravenously injected (femoral vein) with 300 μ Ci of [¹⁸F]altanserin under light ether anesthesia (specific activity: 0.8 Ci/ μ mol). The blood (±5 ml) was collected in heparinated tubes from the heart 4 hr after radiopharmaceutical injection and centrifuged for 5 min at 4000 rpm. The plasma was diluted 12-fold with water at pH 4 (0.05 *M* HOAc) and slowly passed through a C-18 Sep Pak cartridge. After washing the support with 0.1% triethylamine in water (10 ml), the radioactivity was eluted with a tetrahydrofuran and methanol mixture (25/75, 1.5 ml). The radioactive solution was then analyzed by HPLC using a Lichrosorb RP Select-B column (250 × 0.4 cm) eluted with [CH₃OH/THF/H₂O (pH 4): 13/32.5/54.5] at a flow rate of 0.7 ml/min. The extraction efficiency of the radioactivity was 95%–97%.

Chemical Form of ¹⁸F in Rat Brain

Rats (200 g, n=4) were intravenously injected (femoral vein) with 300 μ Ci of [¹⁸F]altanserin under light ether anesthesia. The animals were killed by decapitation 4 hr after injection of the radiotracer. Each brain was removed and homogenized using a Polytron tissue disrupter with 4 ml of cold methanol (25). The homogenate was centrifuged for 4 min and the supernatant decanted. The pellet was again homogenized with 4 ml of cold methanol and centrifuged. A small amount of unlabeled altanserin was added to the combined methalonic extracts (extraction efficiency > 90%) and an aliquot of this solution analyzed in HPLC as described for plasma analysis.

RESULTS

Radiosynthesis

The radiolabeling of [¹⁸F]altanserin was carried out by nucleophilic substitution of [¹⁸F]fluoride on 3-(2-(4-(4nitrobenzoyl)-1-piperidinyl)-propyl)-1,2-dihydro-2-thioxo-4-(³H)quinazolinone (nitroaltanserin (F), Fig. 1). This precursor was synthesized from p-nitrobenzoyl-4-piperidine (A) according to the route shown in Figure 2. The preparation of this substrate (A) involved a multi step synthesis starting with isonipecotic acid as previously described (*16*). This cold substrate (A) was coupled with β -chloroethylethylcarbamate followed by hydrolysis and cyclization of

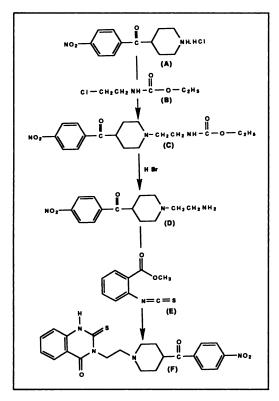
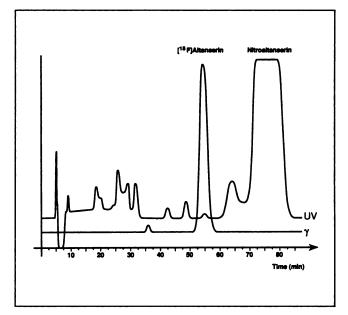


FIGURE 2. Chemical steps for the synthesis of nitroaltanserin starting from p-nitrobenzoyl-4-piperidine.

the primary amine obtained with methyl 2-isothiocyanatobenzoate leading finally to nitroaltanserin.

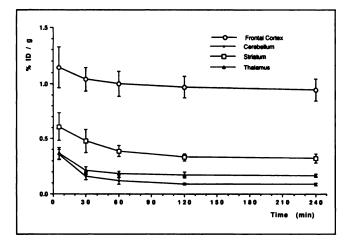

Fluorine-18 was produced by the conventional (p,n) reaction on ¹⁸O-enriched water (30%) with a batch production yield averaging 200 mCi.

The nitro precursor allowed a one-pot fluorination step in the presence of K_2CO_3 and DMSO using the amino polyether K222 complex method. The use of microwave heating conditions as suggested by Hwang et al. (26) gave a radiochemical yield of 40% starting with 9 mg of nitroaltanserin in a total reaction time (purification not included) of about 5 min (Table 2).

The HPLC purification was carried out as described in the experimental section. The two chromatograms (Fig. 3) (radioactivity and UV at 254 nm) showed a difference in

TABLE 2						
Radiofluorination Yields of [¹⁸ F]Altanserin Obtained in						
Various Experimental Conditions						

Substrate		Radiochemical Yield (%EOB)		
		Normal (135°C, 30 min)	Microwave (5 min)	
Br-Altanserin	9 mg	1	_	
NO ₂ -Altanserin	1 mg	<1	2	
	3 mg	<2	20	
	5 mg	<5	25	
	9 mg	5–10	40	
	15 mg	20	50	


FIGURE 3. HPLC purification profile of [¹⁸F]altanserin. Conditions: Select-B (7μ) column (25 × 250 mm) (Merck, Darmstadt, Germany). Eluent: [CH₃OH/THF/H₂O pH 5] (12.6/32.4/55). Flow rate: 16 ml/min.

the two retention times of about 20 min between the radioactive compound eluting first at 55 min and the nitroaltanserin. Pure [¹⁸F]altanserin was finally obtained with an overall radiochemical yield of 10% E.O.S. and a specific activity of 0.8–1.3 Ci/ μ mol after a total preparation time of about 110 min.

Animal Experiments

Table 3 shows the biodistribution of radioactivity in various rat tissues at 5, 60, and 240 min after injection of ¹⁸F-labeled altanserin. The bulk of radioactivity concentrated at early times in the lungs, liver, and kidneys. Half a

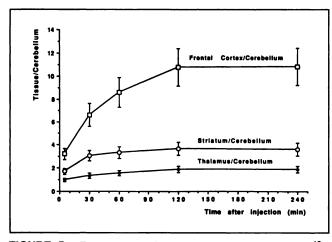

Organs	5 min	1 hr	4 hr	
Blood	1.31 ± 0.04	0.46 ± 0.09	0.22 ± 0.03	
Heart	0.75 ± 0.06	0.30 ± 0.05	0.15 ± 0.02	
Lungs	2.04 ± 0.20	0.98 ± 0.15	0.40 ± 0.08	
Liver	1.91 ± 0.08	1.36 ± 0.16	0.57 ± 0.06	
Spleen	0.87 ± 0.05	0.57 ± 0.09	0.21 ± 0.04	
Adrenals	2.90 ± 0.30	1.53 ± 0.20	0.62 ± 0.12	
Kidneys	1.09 ± 0.12	0.87 ± 0.05	0.42 ± 0.08	
Small intestine	0.77 ± 0.06	0.71 ± 0.08	0.45 ± 0.06	
Ovaries	1.32 ± 0.20	0.94 ± 0.06	0.28 ± 0.04	
Stomach	1.06 ± 0.20	0.47 ± 0.07	0.15 ± 0.02	
Muscles	0.31 ± 0.05	0.14 ± 0.02	0.11 ± 0.06	
Skin	0.42 ± 0.07	0.65 ± 0.15	0.27 ± 0.09	
Thyroid	1.17 ± 0.12	0.57 ± 0.08	0.55 ± 0.15	
Bone	0.18 ± 0.03	0.22 ± 0.05	0.31 ± 0.05	
Brain	0.42 ± 0.04	0.54 ± 0.09	0.21 ± 0.10	

FIGURE 4. Time course of ¹⁸F radioactivity in rat frontal cortex, striatum, thalamus and cerebellum after intravenous injection of $[^{18}F]$ altanserin. Data are mean %dose/g ± s.d. (n=6).

percent of the administrated dose localized rapidly into the brain and remained constant for more than 1 hr indicating a significant retention by brain tissue. Clearance of radioactivity took place at 4 hr after injection for all tissues. Five minutes after injection, the %ID/g of bone was 0.18%. This value increased slowly with time to reach 0.31% at 4 hr postinjection. Platelets which are known to contain S₂ receptors (27) were isolated from 1 ml of plasma as described previously by Boyum (28). Values of 1.3% and 2% of the percentage of the ID/g of blood were found in platelets at 5 min and 4 hr after injection respectively.

The time course of ¹⁸F radioactivity in cerebellum (CB), frontal cortex (FC), striatum (ST), and thalamus (TL) was determined in rats (n=6). As shown in Figure 4, the radioactivity in the FC decreased slowly with time from 1.14% \pm 0.18% ID/g of tissue at 5 min to a value of 1.00% \pm 0.11% at 60 min and remained relatively constant thereafter. The striatum and thalamus displayed lower uptakes (0.39 \pm 0.05 and 0.18 \pm 0.03, respectively, at 1 hr after

FIGURE 5. Time course of tissue-to-cerebellum ratios of 18 F radioactivity after intravenous injection of [18 F]altanserin. Data are mean ratios ± s.d. (n=6).

injection). The activity in the cerebellum was low and also relatively stable from 1 to 4 hr after injection, $0.12\% \pm 0.03\%$ and $0.09\% \pm 0.01\%$ ID/g of tissue, respectively.

The time course of tissue-to-cerebellum ratios is shown in Figure 5. The ratios of striatum and thalamus to cerebellum were low (3.6 \pm 0.4 and 1.8 \pm 0.2, 2 hr after injection, respectively). By contrast, the frontal cortex-tocerebellum ratio increased strongly with time and reached a plateau of 10.8 \pm 1.3 at 2 hr postinjection.

The specificity of the in vivo [¹⁸F]altanserin binding was evaluated by blocking experiments using S₂ and D₂ antagonists. The results are summarized in Table 4. Drugs with high affinity for serotonin S₂ receptor sites (ketanserin, pipamperone, ritanserin) (23,29) and spiperone, which has a mixed D₂-S₂ affinity (23), strongly blocked the [¹⁸F] altanserin accumulation in the frontal cortex and striatum. Methysergide, which is also very specific for S₂ sites (23), partially prevented [¹⁸F]altanserin uptake in these two brain regions. Drugs showing higher affinity for D₂ than for S₂ receptor sites such as halopemide (30,31) and bromolisuride (32) weakly decreased frontal cortex and striatum-to-cerebellum ratios. Sulpiride, a specific D₂ antagonist (31), did not modify significantly the FC/CB and the ST/CB ratios.

The frontal cortex-to-cerebellum ratio was drastically influenced by the specific activity of the radiolabeled compound and decreased with the addition of carrier. Ratios of 12.2 and 3.1 were found for [18 F]altanserin injection with specific activities of 1 Ci/µmol and 2 mCi/µmol respectively.

The in vivo stability of [¹⁸F]altanserin was determined by studying the percentage of unchanged radiopharmaceutical in rat brain and blood 4 hr after radiotracer injection. Under the conditions described in the Materials and Methods section, the HPLC analysis showed in both cases a main radioactive peak corresponding to [¹⁸F]altanserin. This peak contained more than 85% and 96% of the extracted radioactivity from blood and brain samples, respectively.

DISCUSSION

Synthesis

As shown in Table 2, the radiofluorination reaction with bromoaltanserin as precursor gave a very poor radiochemical yield of [18 F]altanserin, predicting nevertheless the possibility of a higher fluorination yield by direct nucleophilic 18 F-NO₂ displacement (*33*). The critical prerequisite of this work was therefore the preparation of the nitroaltanserin precursor (F), which has not been previously reported.

The radiochemical yields obtained with the nitro derivative were compared using conventional and microwave heating conditions. Although the automation of microwave heating is technically complicated, this technique led to a reduced reaction time and higher reproducible radiochemical yields. Furthermore, the use of lower starting amounts of precursor led to easier purification steps.

Optimization of the HPLC conditions was achieved on a Lichrosorb RP Select-B Merck column using the method

 TABLE 4

 Effect of Different Competing S2 and D2 Receptor Ligands on the Regional Distribution of [18F]Altanserin

Cold ligand	K _i (nM)		Injected			
	S₂	D ₂	dose (mg/kg)	Frontal cortex/ cerebellum	Striatum/ Cerebellum	References
No competing ligand			100 μCi	10.3 ± 0.6	3.4 ± 0.2	
n.c.a. [¹⁸ F]altanserin			(0.9 Ci/µmol)			
Ketanserin	0.63	240	2.5	1.6 ± 0.2	1.5 ± 0.2	23, 29
Ritanserin	0.28	22	2.5	1.5 ± 0.2	1.4 ± 0.2	23
Pipamperone	0.94	96	10	1.4 ± 0.2	1.5 ± 0.2	23, 29
Methysergide	1.30	140	2.5	3.2 ± 0.5	2.0 ± 0.3	23, 29
Spiperone	0.64	0.26	2	1.5 ± 0.2	1.3 ± 0.2	23, 29
Sulpiride	>1000	31	40	9.8 ± 0.7	3.3 ± 0.3	31
Halopemide	220	3.1	20	7.1 ± 0.7	2.9 ± 0.2	30, 31
Bromolisuride	—	0.3*	0.4	6.4 ± 0.4	2.8 ± 0.2	32
a. e rats were pretreated 1						

previously reported (34,35). The pH was of critical influence on the retention time of [¹⁸F]altanserin and its nitroprecursor. On the analytical scale, a good separation between the two derivatives was obtained in less than 15 min using a solvent mixture CH₃OH/THF/H₂O at pH 4 (12.6/32.4/ 55). Unfortunately on the preparative scale, due to the appearance of side products in the labeling step, a satisfactory purification of [¹⁸F]altanserin was only achieved at pH 5, which increased the retention times of the labeled and unlabeled compounds (Fig. 3).

Animal Experiments

In order to validate the use of [¹⁸F]altanserin as a serotoninergic radioligand for in vivo binding assays, animal experiments were carried out.

Significant uptake of [¹⁸F]altanserin was observed in the frontal cortex, a brain region known to contain high S₂ (*36*) and low α_1 receptor densities. A slight but significant accumulation of [¹⁸F]altanserin was found in the striatum, which contains many more D₂ than S₂ sites. The [¹⁸F]altanserin uptake in the thalamus displaying α_1 receptor density, was very low.

The critical point of this study was to differentiate the binding of [¹⁸F]altanserin to S₂ from α_1 sites in the frontal cortex and the binding to S₂ from D₂ sites in the striatum. Regarding the possible binding of [¹⁸F]altanserin to α_1 receptors, the only known pure α_1 antagonist prazosin, widely used in vitro, has a poor penetration into the brain (Leysen JE, *personal communication*). This compound was not used in our experiments. However, as shown in Table 1, altanserin, like ketanserin, has a much more lower binding affinity for α_1 than for S₂ receptor sites.

Regarding the differentiation between [18 F]altanserin binding on S₂ and D₂ sites, several serotonin S₂ and dopamine D₂ receptor blockers were chosen with respect to their in vitro biochemical properties (K_j, K_d) shown in Table 4. The doses of pretreatment were selected according to published data [Table 4, (29,32)]. When this information was not available, the injected doses were sufficient to induce catalepsy in rats (halopemide).

Theoretically, [18F]altanserin binding on S2 receptors sites in the frontal cortex and in the striatum should be completely blocked by pretreatment with specific S₂ antagonists. Our data clearly demonstrated that all the S₂ antagonists and particularly ketanserin (K_i: nM for S₂ and D₂ receptor sites: 0.63-240) strongly prevented [18F]altanserin accumulation both in the frontal cortex and in the striatum, suggesting an [18F]altanserin binding to S₂ receptor sites in those brain regions. Furthermore, [18F]altanserin uptake in the striatum seems to occur on S₂ receptor sites since ketanserin, as demonstrated by Suehiro et al. (37) and Maziere et al. (32), did not modify in this region of the brain selective binding of specific D₂ ligands to dopamine D_2 receptor sites (N-[¹¹C]methyl-benperidol and [⁷⁶Br] bromolisuride). Spiperone, which has a mixed D₂-S₂ affinity, showed the same behavior. The incomplete blockage measured after pretreatment with methysergide could be explained by the lack of saturation of the S₂ sites, even with an injection of the ligand at a dose of 10 mg/kg.

In principle, the [¹⁸F]altanserin binding on S₂ receptor sites in the frontal cortex and striatum should not be influenced by pretreatment with specific D₂ antagonists. The biochemical pattern of halopemide and bromolisuride (30,31,32) shows that these drugs exhibit more affinity for dopamine D₂ than serotonin S₂ receptors. However, a partial occupancy of S₂ sites may be expected when these ligands are used at doses required to reach saturation of D₂ receptor sites (i.e., 30 mg/kg and 0.4 mg/kg, respectively). Our results displayed this feature, but pretreatment with halopemide and bromolisuride did not influence more significantly the ST/CB than the FC/CB ratio suggesting also a selective [¹⁸F]altanserin binding in the striatum on S₂ sites.

Sulpiride is highly specific but has a rather low dopamine D_2 receptor binding affinity (31). Its penetration into the brain is very poor (36) and this drug caused the same problems in our pretreatment investigations as those men-

tioned with prazosin and methysergide. In any case, very large doses of sulpiride (40 mg/kg) did not significantly modify the striatum and the frontal cortex to cerebellum ratios. According to the data of our blocking experiments in rats, [¹⁸F]altanserin appeared more selective for S₂ receptors than other serotonin antagonists available for PET investigations today (Table 1) and in particular more selective than setoperone (*38*).

The frontal cortex-to-striatum ratio which appears to be a good index of the ligand specificity (S_2/D_2) is much higher for [¹⁸F]altanserin and reached approximately 2.56 at 1 hr postinjection. This ratio remained relatively constant thereafter. The values calculated on the basis of the data reported by Mazière and coworkers for [¹⁸F]setoperone in similar rat experiments were lower and did not exceed 1.18 (*38*). For [¹¹C]methylbromo-LSD (*19*), the greatest specificity was observed 30 min postinjection with a frontal cortex-tostriatum ratio of 1.8 in a mouse brain regional biodistribution study. Other positron-labeled S₂ ligands, such as spiperone derivatives, are less specific.

The influence of the specific activity of the radiopharmaceutical on the FC/CB ratio demonstrated the saturability of the [¹⁸F]altanserin binding in the frontal cortex.

Studies of the chemical form of the ¹⁸F found in blood and brain 4 hr after injection of the radiopharmaceutical demonstrated the good in vivo stability of this radiopharmaceutical in rats as also described for ketanserin by Meuldermans et al. (39).

CONCLUSION

In conclusion, these investigations demonstrated that $[{}^{18}F]$ altanserin exhibits high specificity and selectivity for serotonin S₂ receptors, with high specific-to-nonspecific binding ratios in rats. Accordingly, $[{}^{18}F]$ altanserin can be regarded as a highly promising radioligand for PET studies of serotonin S₂ receptors in the living brain.

APPENDIX: SYNTHESIS OF NITROALTANSERIN AND RADIOSYNTHESIS OF [18F]ALTANSERIN

Synthesis of Nitroaltanserin

Four grams of nitrobenzoylpiperidine.HCl (14.8 mmol, A) (Fig. 2) were dissolved in 100 ml of water, neutralized with NH₄OH and extracted twice with CH₂Cl₂. The organic phase was dried over potassium carbonate and evaporated to dryness under vacuum. The resulting oil was dissolved in 100 ml of 4-methyl-2-pentanone with 3 g (19.9 mmol) of β -chloroethyl-ethylcarbamate (B), 4.7 g of K₂CO₃ and 50 mg of Nal. The mixture was heated under reflux overnight. After reaction, the hot solution was rapidly filtered and the solvent removed under vacuum.

The residue was dissolved in 5 ml of chloroform, applied to a silica gel column (50 cm \times 4 cm) and eluted with chloroform. The fraction eluting between 150–175 ml was collected. This purification procedure was applied twice to ensure high purity of N-1-[2-ethoxycarbonylaminoethyl]-4-[4-(nitrobenzoyl)]piperidine (C).

The oil obtained after rotary evaporation of the chloroform was treated with 48% HBr (50 ml) under reflux for 4 hr. The solution was concentrated under vacuum, diluted with 100 ml of water, neutralized with NH4OH and extracted twice with dichloromethane. The successive organic phases were mixed, washed with water and dried over potassium carbonate.

After removal of the solvent, the residual oil N-1-(2-aminoethyl)-[4-(nitrobenzoyl)]piperidine (D) was dissolved immediately in 10 ml of dry THF and treated with 3.2 g (16.6 mmol) of methyl 2isothiocyanatobenzoate (E). An exothermic reaction took place and nitroaltanserin (F) crystallized immediately. After 30 min, this nitro derivative was filtered and washed with 10 ml of cold THF. The yield, starting from nitrobenzoylpiperidine was 62% (mp: 242°C). The product was identified as nitroaltanserin by ¹H NMR and mass spectroscopy.

Analytical HPLC using a Lichrosorb RP Select-B column (25 \times 0.4 cm) under the following conditions: flow 0.8 ml/min, CH₃OH/THF/H₂O (pH 4) (12.6/32.4/55), showed a purity higher than 99% (retention time \approx 14 min).

¹H NMR (400 MHz, (methyl sulfoxide)-d6): δ 8.33 (d, 2H, J=8.4 Hz); 8.19 (d, 2H, J=8.4 Hz); 7.95 (d, 1H, J=8 Hz); 7.74 (t, 1H, J=7.6 Hz); 7.38 (d, 1H, J=8 Hz); 7.34 (t, 1H, J=7.6 Hz); 4.55 (t, 2H, J=7.2 Hz); 3.44 (m, 1H); 3.31 (s, 1H, NH); 3.0 (m, 2H); 2.65 (m, 2H); 2.24 (m, 2H); 1.78 (m, 2H); 1.54 (m, 2H).

MS, m/e (relative intensity): 438 (M⁺, 4), 260 (22), 247 (44), 235 (41), 234 (21), 206 (15), 205 (97), 204 (100), 203 (27), 162 (26), 150 (16), 144 (24), 104 (14), 76 (17).

Fluorine-18 Production

The no-carrier-added aqueous [¹⁸F]fluoride solution was produced by the ¹⁸O(p,n)¹⁸F reaction in a nickel target equipped with front and rear 100 μ Ti foils (40). A typical production required a 10 μ A bombardment for 1 hr on a target containing 1.8 ml of 30% enriched [¹⁸O]water. The irradiated target contents (180–200 mCi of [¹⁸F]fluoride) were delivered to the laboratory through a 25-m long teflon tube (i.d.: 0.8 mm).

Radiolabeling of [18F]Altanserin

To a residue of no-carrier-added $(K/222)^{+18}F^-$ prepared as previously described (41) were added either nitroaltanserin (9 mg) or bromoaltanserin (9 mg) in 1 ml of DMSO. The vial equipped with a screw cap and silicon septum was tightly closed and either heated in a aluminium block at 135°C for 30 min or in a microwave oven (Baucknecht 150 W) for 5 min. The DMSO mixture was then diluted with 15 ml of water and the whole solution passed through a C-18 Sep Pak cartridge, which was first activated with ethanol (5ml) and then with water (5 ml). After washing the cartridge successively with 5 ml of 0.1 N HCl, 10 ml H₂O and 50 ml of a mixture methanol/water (20/80), [¹⁸F]altanserin was eluted with 2 × 1 ml ethanol.

Preparative HPLC purification was carried out using a Lichrosorb RP Select-B column (250 × 25.7 mm) eluted with [CH₃OH/ THF/water pH 5 (5 × 10^{-2} *M* HOAc)] (12.6/32.4/55) at a constant flow rate of 16 ml/min. The retention time for [¹⁸F]altanserin and nitoaltanserin were 55 min and 75 min, respectively.

With the exception of the labeling step and formulation, the entire synthesis was performed with a remote control feel system. Robotic synthesis is under study for further investigations.

Formulation

The HPLC solvent containing the radioactive peak was diluted ten fold with water and passed through a C-18 Sep Pak cartridge. After washing the cartridge with water (25 ml), [¹⁸F]altanserin was eluted with 1 ml ethanol. Nine milliters of NaCl (0.9%) were then added and the resulting solution was filtered on Millex-GV (0.22 μ m, Millipore) to ensure sterility.

Specific Activity

The specific activity of [¹⁸F]altanserin was determined on an analytical reverse-phase HPLC column (Lichrosorb RP Select-B column (250 × 4.6 mm). The mobile phase was CH₃OH/THF/ H_2O pH 4 (12.6/32.4/55) with a flow rate of 0.8 ml/min. Under these experimental conditions, the retention time of [¹⁸F]altanserin was 10 min. The UV detector with a 10-mm analytical cell was set at 254 nm and the area of the UV absorbance peak of [¹⁹F] altanserin was determined by an automated integrator (Shimadzu C-R5A Chromatopac). A calibration curve was determined with authentic reference samples.

ACKNOWLEDGMENTS

The authors wish to thank Dr. M. Janssen of Janssen Pharmaceutica, Beerse, Belgium, for graciously providing samples of altanserin, bromoaltanserin, and nitrobenzoylpiperidine. They are also grateful to Dr. J. E. Leysen (Janssen Pharmaceutica) for providing methysergide, pipamperone, halopemide, and ketanserin and also to Dr. B. Mazière (Orsay) for the gift of bromolisuride. The authors also thank Dr. D. Comar, Dr. B. Sadzot, and Dr. E. Salmon for their helpful discussions.

REFERENCES

- Wesmann W, Weiner N, Rotsch M, Shultz E. Serotonin binding in rat brain: circadian rhythm and effect of sleep deprivation. J Neural Trans 1983;18:287-294.
- Shih JC, Young H. The alteration of serotonin binding sites in aged human brain. Life Sci 1978;23:1441-1448.
- Reynolds GP, Arnold L, Rossor MN, Iversen LL, Mountjoy CQ, Roth M. Reduced binding of [³H]ketanserin to cortical 5-HT₂ receptors in senile dementia of the Alzheimer type. *Neurosci Lett* 1984;44:47-51.
- Cheethman SC, Crompton MR, Katona CL, Horton RW. Brain 5-HT2 receptor binding sites in depressed suicide victims. *Brain Res* 1988;443:272– 280.
- Coccaro EF, Siever LJ, Klar HM, et al. Serotoninergic studies in patients with affective and personality disorders. *Arch Gen Psychiatry* 1989;46:587– 599.
- Curzon G. Serotonergic mechanisms of depression. Clin Neuropharmacol 1988;11:S11-S21.
- Messing RB, Lytle LD. Serotonin-containing neurons: their possible role in pain and analgesia. Pain 1977;21:1-21.
- Maloteaux JM, Laterre EC, Laduron PM, Javoy-Agid F, Agid Y. Decrease of serotonin-S2 receptors in temporal cortex of patients with Parkinson's disease and progressive supranuclear palsy. *Mov Disord* 1988;3:255–262.
- Frost JJ. Imaging neuronal biochemistry by emission computed tomography: focus on neuroreceptors. *Trends Pharmacol Sci* 1986;7:490–496.
- Baron JC, Samson Y, Comar D, Crouzel C, Deniker P, Agid Y. Etude in vivo des récepteurs sérotoninergiques centraux chez l'homme par tomographie à émission de positons. *Rev Neurol* 1985;141;537-545.
- Berridge M, Comar D, Crouzel C, Baron JC. ¹¹C-labeled ketanserine: a selective serotonin S₂ antagonist. J Labelled Compd Radiopharm 1983;20:73– 78.
- Shiue CY, Fowler JS, Wolf AP, Watanabe M, Arnett CD. Synthesis and specific activity determination of no-carrier-added (NCA)¹⁸F-labeled butyrophenone neuroleptics—benperidol, haloperidol, spiroperidol, and pipamperone. J Nucl Med 1985;26:181–186.
- Burns HD, Dannals RF, Langström B, et al. (3-N-[¹¹C]-(methyl)spiperone, a ligand binding to dopamine receptors: radiochemical synthesis and biological studies in mice. J Nucl Med 1984;25:1222-1227.
- Wagner HN, Burns HD, Dannals RF, et al. Imaging dopamine receptors in the human brain by positron emission tomography. *Science* 1983;221:1264– 1266.
- Blin J, Pappata S, Kiyosawa M, Crouzel C, Baron JC. [¹⁸F]setoperone: a new high-affinity ligand for positron emission tomography study of the serotonin-2 receptors in baboon brain in vivo. *Eur J Pharmacol* 1988;147:73–82.
- Crouzel C, Venet M, Irie T, Sanz G, Boullais C. Labelling of a serotoninergic ligand with ¹⁸F:[¹⁸F]setoperone. J Labelled Compd Radiopharm 1988;25:403-414.
- 17. Blin J, Sette G, Fiorelli M, et al. A method for the in vivo investigation of

the serotonergic 5-HT₂ receptors in the human cerebral cortex using positron emission tomography and ¹⁸F-labeled Setoperone. J Neurochem 1990;54:1744–1754.

- Wong DF, Lever JR, Hartig PR, et al. Localization of serotonin 5-HT2 receptors in living human brain by positron emission tomography using N1([¹¹C]methyl)-2-Br-LSD. Synapse 1987;1:393-398.
- Lever JR, Dannals RF, Wilson AA, et al. Synthesis and in vivo characterization of D(+)(N1-¹¹Cmethyl)-2-Br-LSD: a radioligand for positron emission tomographic studies of serotonin 5-HT2 receptors. Nucl Med Biol 1989;16:697-704.
- Leysen JE, Gommeren W. Drug-receptor dissociation time, new tool for drug research: receptor binding affinity and drug-receptor dissociation profiles of serotonin-S₂, dopamine D₂, histamine H₁, antagonists, and opiates. *Drug Dev Res* 1986;8:119-131.
- Crouzel C, Venet M, Sanz G, Denis A. Labelling of a new serotoninergic ligand: [1*F]ritanserine. J Labelled Compd Radiopharm 1988;25:827-832.
- Lemaire C, Cantineau R, Christiaens L, Guillaume M. N.C.A. radiofluorination of altanserine a potential serotonine receptor-binding radiopharmaceutical for positron emission tomography. J Labelled Compd Radiopharm 1988;26:336-337.
- 23. Leysen JE. Use of 5-HT receptor agonists and antagonists for the characterization of their respective receptor sites. In: Boulton AB, Baker GB, Jurio AV, eds. Drugs as tools in neurotransmitter research. Neuromethods, volume 12. Clifton NJ: The Humana Press, Inc.; 1989:299-349.
- Katchalski E, Ischai DB. 2-oxazolidones: Synthesis from N-carbalkoxy βhaloalkylamines. J Org Chem 1950;15:1067-1070.
- Fowler JS, Wolf AP, McGregor RR, Dewey SL, Logan J, Schyler DJ, Langstrom B. Mechanistic positron emission tomography studies: demonstration of a deuterium isotope effect in the monoamine oxydase-catalyzed binding of [¹¹C]L-deprenyl in living baboon brain. J Neurochem 1988;51:1524-1534.
- Hwang DR, Moerlein SM, Lang L, Welch MJ. Application of microwave technology to the synthesis of short-lived radiopharmaceuticals. J Chem Soc Chem Commun 1987;2:1799–1801.
- de Chaffoy de Courcelles D, Leysen JE, De Clerck F, Van Belle H, Janssen PA. Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 sites. J Biol Chem 1985;260:7603-7608.
- Boyum A. Separation techniques for mononuclear blood cells. In: Ferrone S, Solheim BG, eds. *HLA typing: methodology and clinical aspects, volume 1.* Boca Raton, FL: CRC Press, Inc; 1982:1-12.
- Laduron PM, Janssen PFM, Leysen JE. In vivo binding of [³H]ketanserine on serotonin S₂-receptors in rat brain. *Eur J Pharmacol* 1982;81:43–48.
- Loonen AJM, Soudijn W. Halopemide, a new psychotropic agent. Cerebral distribution and receptor interactions. *Pharmaceutisch Weekblad Scientific Edition* 1985;7:1–9.
- Leysen JE. Receptors for neuroleptic drugs. In: Advances in human psychopharmacology, volume 3. JAI Press, Inc; 1984:315–356.
- Maziere B, Loc'H C, Stulzaft O, et al. [⁷⁶Br]Bromolisuride: a new tool for quantitative in vivo imaging of D-2 dopamine receptors. *Eur J Pharmacol* 1986;127:239-247.
- 33. Shiue CY, Watanabe M, Wolf AP, Fowler JS, Salvadori P. Application of the nucleophilic substitution reaction to the synthesis of no-carrier-added [¹⁸F]fluorbenzene and other ¹⁸F-labeled aryl fluorides. J Labelled Compd Radiopharm 1984;21:533-547.
- Glajch JL, Kirkland JJ, Squire KM. Optimization of solvent strength and selectivity for reversed-phase liquid chromatography using an interactive mixture-design statistical technique. J Chromatogr 1980;199:57-79.
- Snyder LR, Kirkland JJ. Introduction to modern liquid chromatography, second edition. New York: Wiley; 1979:661.
- Leysen JE, Janssen PAJ. Specificity of ligands used in psychiatric research. In: Sen AK, Lee T, eds. *Receptors and ligands in psychiatry and neurology*, *volume 1*. London: Cambridge University Press; 1987:526-54.
- Suehiro M, Dannals RF, Scheffel U, et al. In vivo labeling of the dopamine D₂ receptor with N-¹¹C-methyl-benperidol. J Nucl Med 1990;31:2015-2021.
- Maziere B, Crouzel C, Venet M, et al. Synthesis, affinity and specificity of ¹⁸F-setoperone, a potential ligand for in-vivo imaging of cortical serotonin receptors. Nucl Med Biol 1988;15:463–468.
- Meuldermans W, Hendrickx J, Lauwers W, et al. Excretion and biotransformation of ketanserin after oral and intravenous administration in rats and dogs. Drug Metab Dispos 1984;12:772-781.
- Kilbourn MR, Jerabeck PA, Welch MJ. An improved ¹⁸O-water target for ¹⁸F fluoride production. Int J Appl Rad Isot. 1985;36:327-328.
- Lemaire C, Guillaume M, Cantineau R, Christiaens L. No-carrier-added regioselective preparation of 6-[¹⁸F]fluoro-L-dopa. J Nucl Med 1990;31:1247-1251.