Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
OtherBASIC SCIENCE INVESTIGATIONS

Thermal Dosimetry Predictive of Efficacy of 111In-ChL6 Nanoparticle AMF–Induced Thermoablative Therapy for Human Breast Cancer in Mice

Sally J. DeNardo, Gerald L. DeNardo, Arutselvan Natarajan, Laird A. Miers, Allan R. Foreman, Cordula Gruettner, Grete N. Adamson and Robert Ivkov
Journal of Nuclear Medicine March 2007, 48 (3) 437-444;
Sally J. DeNardo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerald L. DeNardo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arutselvan Natarajan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laird A. Miers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Allan R. Foreman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cordula Gruettner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grete N. Adamson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert Ivkov
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Antibody (mAb)-linked iron oxide nanoparticles (bioprobes) provide the opportunity to develop tumor specific thermal therapy (Rx) for metastatic cancer when inductively heated by an externally applied alternating magnetic field (AMF). To evaluate the potential of this Rx, in vivo tumor targeting, efficacy, and predictive radionuclide-based heat dosimetry were studied using 111In-ChL6 bioprobes (ChL6 is chimeric L6) in a human breast cancer xenograft model. Methods: Using carbodiimide, 111In-DOTA-ChL6 (DOTA is dodecanetetraacetic acid) was conjugated to polyethylene glycol-iron oxide–impregnated dextran 20-nm particles and purified as 111In-bioprobes. 111In doses of 740–1,110 kBq (20–30 μCi) (2.2 mg of bioprobes) were injected intravenously into mice bearing HBT3477 human breast cancer xenografts. Pharmacokinetic (PK) data were obtained at 1, 2, 3, and 5 d. AMF was delivered 72 h after bioprobe injection at amplitudes of 1,410 (113 kA/m), 1,300 (104 kA/m), and 700 (56 kA/m) oersteds (Oe) at 30%, 60%, and 90% “on” time (duty), respectively, and at 1,050 Oe (84 kA/m) at 50% and 70% duty over the 20-min treatment. Treated and control mice were monitored for 90 d. Tumor total heat dose (THD) from activated tumor bioprobes was calculated for each Rx group using 111In-bioprobe tumor concentration and premeasured particle heat response to AMF amplitudes. Tumor growth delay was analyzed by Wilcoxon rank sum comparison of time to double, triple, and quintuple tumor volume in each group, and all groups were compared with the controls. Results: Mean tumor concentration of 111In-bioprobes at 48 h was 14 ± 2 percentage injected dose per gram; this concentration 24 h before AMF treatment was used to calculate THD. No particle-related toxicity was observed. Toxicity was observed at the highest AMF amplitude–duty combination of 1,300 Oe and 60% over 20 min; 6 of 10 mice died acutely. Tumor growth delay occurred in all of the other groups, correlated with heat dose and, except for the lowest heat dose group, was statistically significant when compared with the untreated group. Electron microscopy showed 111In-bioprobes on tumor cells and cell death by necrosis at 24 and 48 h after AMF. Conclusion: mAb-guided bioprobes (iron oxide nanoparticles) effectively targeted human breast cancer xenografts in mice. THD, calculated using empirically observed 111In-bioprobe tumor concentration and in vitro nanoparticle heat induction by AMF, correlated with tumor growth delay.

  • monoclonal antibodies
  • nanoparticle
  • alternating magnetic fields
  • thermoablation
  • cancer
View Full Text
PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine: 48 (3)
Journal of Nuclear Medicine
Vol. 48, Issue 3
March 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Thermal Dosimetry Predictive of Efficacy of 111In-ChL6 Nanoparticle AMF–Induced Thermoablative Therapy for Human Breast Cancer in Mice
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Thermal Dosimetry Predictive of Efficacy of 111In-ChL6 Nanoparticle AMF–Induced Thermoablative Therapy for Human Breast Cancer in Mice
Sally J. DeNardo, Gerald L. DeNardo, Arutselvan Natarajan, Laird A. Miers, Allan R. Foreman, Cordula Gruettner, Grete N. Adamson, Robert Ivkov
Journal of Nuclear Medicine Mar 2007, 48 (3) 437-444;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Thermal Dosimetry Predictive of Efficacy of 111In-ChL6 Nanoparticle AMF–Induced Thermoablative Therapy for Human Breast Cancer in Mice
Sally J. DeNardo, Gerald L. DeNardo, Arutselvan Natarajan, Laird A. Miers, Allan R. Foreman, Cordula Gruettner, Grete N. Adamson, Robert Ivkov
Journal of Nuclear Medicine Mar 2007, 48 (3) 437-444;
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • This Month in JNM
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • How Sensitive Is the Upper Gastrointestinal Tract to 90Y Radioembolization? A Histologic and Dosimetric Analysis in a Porcine Model
  • 11C-Methionine PET of Myocardial Inflammation in a Rat Model of Experimental Autoimmune Myocarditis
  • Counting Rate Characteristics and Image Distortion in Preclinical PET Imaging During Radiopharmaceutical Therapy
Show more Basic Science Investigations

Similar Articles

SNMMI

© 2025 SNMMI

Powered by HighWire